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Abstract 

Objective  To compare the effect of low-load blood flow restricted resistance training (BFR-RT) versus high-
load resistance training (HL-RT) on muscle strength, muscle mass, physical function, patient-reported outcomes, 
and adherence to training in clinical musculoskeletal populations.

Data sources  Web of Science, Cochrane Central, Medline, Embase, SportDiscus was searched on the 30th May 2022.

Review methods  This study was conducted as a systematic review and meta-analysis. Randomized Controlled Trials 
(RCTs) were included if they (i) included patients, (ii) comprised of a BFR-RT intervention protocol and a group who 
performed HL-RT (≥ 70%1RM) for at least eight exercise sessions, and (iii) involved at least 1 exercise that targeted 
the lower limbs. The Cochrane Risk of Bias tool was used to evaluate the risk of bias. The meta-analyses were per‑
formed using a random effects model with an adjustment to the confidence interval.

Results  Seven RCTs comprising 303 participants (BFR-RT: n = 151; HL-RT: n = 152) were identified. HL-RT and BFR-RT 
showed similar gains in dynamic (1-10RM) knee extensor strength and leg press strength, quadriceps cross sectional 
area, sit-to-stand performance, and patient reported pain and function. There was a moderate effect favoring BFR-RT 
for increasing maximal isometric knee extensor strength. The grading of certainty in evidence was low-to-very low 
for all outcome variables.

Conclusion  This systematic review and meta-analysis extends our current knowledge about BFR-RT and HL-RT 
as equally effective exercise methods for inducing gains in maximal muscle strength in healthy populations, by now 
also comprising patients suffering from various clinical musculoskeletal conditions. The certainty in the estimates 
was low-to-very low, prompting the inclusion of future higher-quality trials.

Trial registration  PROSPERO ID (CRD42022337173). Registered June 18th 2022.
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Introduction
Recent systematic reviews with meta-analysis have sug-
gested that low-load resistance training (20–50% of one 
repetition maximum (RM)) combined with blood flow 
restriction to the exercising limb (low-load blood flow 
restricted resistance training: BFR-RT) and high-load 
resistance training (HL-RT, ≥ 70% 1RM) are equally 
effective in inducing gains in skeletal muscle mass in 
healthy populations ranging from young-to-old [1–3]. 
Therefore, BFR-RT has been suggested as a feasible 
exercise method in various clinical populations, where 
either fragile post-surgical conditions or the injury itself 
may restrict patients from exercising at higher muscle 
loading intensities [4, 5]. Loss of skeletal muscle mass 
and strength due to immobilization or general unload-
ing is a well-known challenge among patient popula-
tions [6–8]. Further, loss of muscle mass and strength 
has been associated with declines in physical func-
tion [9] which, ultimately, could result in chronically 
reduced physical function [10]. Regaining habitual lev-
els of muscle mass and strength after periods of bedrest 
or unloading may be challenging and, as a consequence, 
deficits in muscle strength often persist despite system-
atic post-injury rehabilitation efforts [11, 12]. There-
fore, it is considered of strong relevance for patients 
to engage in exercise-based activities that preserve or 
promote skeletal muscle mass and mechanical muscle 
function (strength, power, rate of development: RFD) 
to countermeasure the negative impact of disease bur-
den and disuse on muscle morphology, maximal muscle 
strength and function performance [13].

A number of clinical studies have reported compa-
rable gains in both muscle mass and maximal muscle 
strength with BFR-RT vs. HL-RT in patients suffering 
from knee osteoarthritis (OA) [14], anterior cruciate 
ligament reconstruction [15], rheumatoid arthritis [16], 
and patellofemoral pain syndrome [17, 18]. A recent 
meta-analysis by Lixandrao et  al. [1] revealed a supe-
rior effect of HL-RT compared to BFR-RT on evoking 

gains in maximal muscle strength, whereas a subsequent 
meta-analysis by Grønfeldt et  al. [19] reported compa-
rable gains in maximal muscle strength in response to 
BFR-RT vs. HL-RT. Despite the increasing application of 
BFR-RT in various patient populations [14–17, 20–25], 
the available data has not been summarized in a system-
atic review and meta-analysis to investigate if BFR-RT is 
equally effective compared to HL-RT of inducing gains 
in (i) maximal isometric and dynamic muscle strength, 
(ii) skeletal muscle mass, and (iii) physical function in 
clinical populations.

Therefore, the aim of this systematic review and meta-
analysis was to evaluate the effect of BFR-RT vs. HL-RT 
on lower limb muscle strength and mass, objectively 
measured physical function, patient-reported outcomes 
(function and pain), and adherence to training in given 
patient populations with musculoskeletal conditions.

Materials and methods
Search strategy
The protocol for this systematic review was published 
online at the International Prospective Register of System-
atic Reviews (PROSPERO: CRD42022337173). The sys-
tematic review was performed according to the PRISMA 
[26] guidelines. Original peer-reviewed articles were iden-
tified by searching the following electronic databases on 
May 30th 2022: Web of Science, The Cochrane Central 
Register of Controlled Trials, Medline, Embase and Sport-
Discus. An updated search was conducted April 23rd 
2023 where no new studies were identified. No restric-
tions were used in terms of publication language or publi-
cation year. Specific search terms are presented in Table 1.

Inclusion and exclusion criteria
Inclusion criteria comprised randomized controlled 
trials involving patients suffering from a condition or 
injury that requires conservative, medical or surgical 

Table 1  Search strategy

"OR" "AND" "OR" "AND" "OR" "AND" "OR"
"High intensity"[Text Word] "Low load" [Text Word] "Resistance training"[Mesh] "Blood flow occlusion"[Text 

Word]

"High load"[Text Word] "Low intensity" [Text Word] Exercise[Mesh] "Occluded blood flow"[Text 
Word]

"Heavy load"[Text Word] "Body weight" [Text Word] "Strength training"[Text Word] "Vascular Occlusion"[Text Word]

Progressive[Text Word] "Resistance training"[Text Word] "Vascular restriction"[Text Word]

"Heavy weight"[Text Word] Exercis*[Text Word] "Blood flow restriction"[Text 
Word]

"Weight training"[Text Word] Occlusion[Text Word]
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treatment. Included trials needed to have comprised of 
a specific intervention involving at least one interven-
tion group performing low-load (≤ 50% 1RM) BFR-RT 
and a group performing conventional high-load (≥ 70% 
RM) resistance training, performed for at least eight 
exercise sessions. At least one exercise was required to 
target the lower limbs, performed with free weights, in 
weight machines, with elastic band resistance, or with 
body weight exercises. Loading intensity (% 1-RM or 
number of reps to failure) had to be reported. Included 
studies had to report on at least one of the following 
post-intervention outcome parameters: Maximal iso-
metric or isokinetic knee extensor strength, repetition 
maximum knee extensor strength, repetition maxi-
mum leg press strength, quadriceps cross-sectional 
area (CSA), sit-to-stand (STS) performance, maximal 
walking speed, patient-reported function ( i) function 
reported disease-specific questionnaires or ii) global 
questionnaires), patient-reported pain (i.e. i) pain 
reported in disease-specific questionnaires, ii) global 
questionnaires, iii) Numeric Ranking Scale (NRS) for 
worst pain), adherence to training, or the number of 
dropouts.

Trials were excluded if the publication language was 
not English. We did not set restrictions for publication 
date.

Study selection and data extraction
Study inclusion was managed in Covidence (Veritas 
Health Innovation, Melbourne, Australia). A combi-
nation of two reviewers (SJ, SKB/MH) independently 
screened titles and abstracts to identify potentially eli-
gible trials based on predetermined criteria. The full 
text of potentially eligible papers was retrieved and 
independently assessed by the same reviewers to deter-
mine eligibility. Any disagreements were resolved via 
consensus or by consulting a fourth author (IM) when 
necessary. A combination of two reviewers (SJ, MH/
MBB) separately performed data extraction using a pre-
specified excel spreadsheet. Disagreements were solved 
by discussion until agreement was reached. Otherwise, 
a third author was consulted (IM). The following data 
were extracted from each study:

1.	 Trial characteristics (sample size, first author name, 
year of publication, type of trial, country).

2.	 Participant characteristics (age, sex, body mass).
3.	 Intervention procedures for each group, including 

exercise protocols.
4.	 Co-interventions, if any, reported for each group.
5.	 Outcomes variables reported, including time of 

assessment.

Quality assessment
Risk of bias assessment
Two reviewers (SJ, IM) independently assessed the risk 
of bias using Cochrane’s risk of bias tool version 2.0 
(RoB) [27] and discrepancies were resolved through 
discussion until reaching consensus. RoB assessment 
scores on the reporting of judgement items were: (i) 
Adequate (bias, if present, is unlikely to alter the results 
seriously), (ii) Unclear (a risk of bias that raises some 
doubt about the results), and (iii) Inadequate (bias may 
alter the results seriously), corresponding with (i) Low 
risk, (ii), Some concerns, and (iii) High risk of bias. 
The RoB analysis was performed separately for objec-
tive outcomes (i.e. lower limb strength, quadriceps 
CSA, STS) and patient-reported outcomes (function 
and pain) and included five distinct aspects of report-
ing: the randomization process, deviations from the 
intended intervention, missing outcome data, measure-
ment of the outcome variables, and selected reporting 
of the obtained results.

Certainty assessment
Two reviewers (SJ, IM) rated the certainty in the 
evidence for each outcome variable using Grades 
of Recommendation, Assessment, Development, 
and Evaluation (GRADE) [28, 29] (Table  3). Overall 
GRADE scores were categorized as “very low”, “low”, 
“moderate”, or “high” [29].

Statistical analyses
Outcome variables were reported using different units 
across studies. Hence, the effects of low-load BFR-RT and 
HL-RT were evaluated by calculating the post-interven-
tion standardized mean difference (SMD) estimated by 
Hedges’ g as mean1−mean2

SDpooled
 along with the 95% confidence 

interval (CI), where mean1 denotes the post-intervention 
score for BFR-RT group and mean2 denotes the post-
intervention score for the HL-RT group. Also, we 
included the 95% prediction interval (PI) graphically in 
the figures. For interpretation of SMD, the following defi-
nitions were adopted: > 0.2 small effect; > 0.5 moderate 
effect; > 0.8 large effect [30]. SD*

pooled.
Heterogeneity between included studies was assessed 

using the I2 statistics and interpreted as low (I2 = 30–60%) 
and high (I2 ≥ 60%) [31, 32]. Given that a relatively small 
number of trials were included in each meta-analysis 
(often less than 6 studies), a random effects model was 
performed with an adjustment to the CI as proposed by 
Sidik and Jonkman [33].

All statistical analyses were conducted using Stata 17.0 
(StataCorp, TX, USA).
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Results
Study selection
A total of 419 study records were identified, of which 148 
were discarded as duplicates (Fig. 1). From the remaining 
270 studies, 251 were excluded through title screening 
and abstract assessment, while 19 studies were excluded 
following full-text reading, and one study was excluded 
as SMD could not be calculated from the reported data 
[34]. Consequently, a total of seven studies [14–18, 35, 
36] were included in the present meta-analysis.

Study characteristics
Individual trial characteristics are summarized in Table 2. 
A total of 303 patients allocated to either BFR-RT or 
HL-RT were included in the overall meta-analysis (152 
BFR-RT/151 HL-RT). Mean age in each individual trial 
ranged from 25.5 ± 10.4 to 63.3 ± 7.0  years, altogether 
comprising 61% patients who were women. The included 
study populations were: patellofemoral pain syndrome 

[17, 18], knee OA [14, 36], anterior cruciate ligament 
reconstruction surgery [15], rheumatoid arthritis [16], 
and military personnel suffering from musculoskeletal 
lower-limb injuries [35].

All trials included at least one intervention group per-
forming BFR-RT and at least one intervention group per-
forming HL-RT, with six trials reporting the intensity as 
%1RM [14–18, 36] and one trial reporting intensity as 
8RM [35]. Duration of BFR-RT varied from 2–3 sessions/
week for 4–12 weeks in six of the included trials [14–18, 
36] and 2 sessions/day for three weeks in Ladlow et  al. 
[35]. Duration of HL-RT varied from 2–3 sessions/week 
for three to 12 weeks in all trials. Adherence to training 
ranged from 83%-100% and 83%-90% for BFR RT and 
HL-RT, respectively. Ferraz et al. [14] reported 10 drop-
outs (BFR-RT: n = 4 vs. HL-RT: n = 6) and four adverse 
events (HL-RT: n = 4), Giles et al. [17] reported 10 drop-
outs (five in each group), Hughes et al. [15] reported four 
dropouts (two each group), and Rodrigues et  al. [16] 

Fig. 1  PRISMA flow chart
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Table 2  Study characteristics

Study
Diagnosis

BFR RT 
N (m/f)
Age

Exercises Intensity 
Mean LOP
Cuff width

Sets 
Reps 
Rest between sets 
Frequency
Duration

Adherence 
Dropouts 
Adverse events
Supervision

Outcomes reported

HI RT

Bryk
2016 [28]
Knee OA

17 (17/0)
62.3 ± 7.0

Knee extension 
(machine, 90°-0°)

30% 1RM
200 mmHg
N/I

3 set,
30
N/I
3/week
6 weeks

N/I
0
0
Yes

Isometric knee extension, 
Numeric Pain Rating Scale

17 (17/0)
60.4 ± 6.7

Knee extension 
(machine, 90°-0°)

70% 1RM
None
None

3
10
N/I
3/week
6 weeks

N/I
0
0
Yes

Constantinou
2022 [10]
PFP

30 (17/13)
25.5 ± 14

Hip extension (machine)
Hip abduction (machine)
Knee extension, unilat‑
eral (machine, 90°-45°)
Leg press, unilateral 
(machine, 0°-45°)

30% 1RM
70% LOP
10 Cm

4
30–15-15–15
30 s
3/week
4 weeks

83%
0
0
Yes

Isometric knee extension

30 (16/14)
30.5 ± 16

Hip abduction, (ankle 
weights, side-lying)
Hip extension (machine)
Hip abduction (elastic 
band, standing)
Hip external rotation 
(elastic band, sitting)
Knee extension 
(machine, 90°-45°)
Leg press, unilateral 
(machine, 0°-45°)

70% 1RM
None
None

3
10
120 s
3/week
4 weeks

83%
0
0
Yes

Ferraz
2018 [6]
Knee OA

16 (0/16)
60.3 ± 3

Leg press, bilateral 
(machine)
Knee extension, bilateral 
(machine)

20–30% 1RM
70% LOP
175 mm

4–5
15
60 s
2/week
12 weeks

90%
4
0
Yes

Knee extension strength 
(RM), Leg press strength 
(RM), Sit-to-stand, WOMAC 
Physical function, WOMAC 
pain

16 (0/16)
59.9 ± 4

Leg press, bilateral 
(machine)
Knee extension, bilateral 
(machine)

50–80% 1RM
None
None

4–5
10
60 s
2/week
12 weeks
Yes

91%
6
4
Yes

Giles
2017 [9]
PFP

40 (16/24)
28.5 ± 5.2

Leg press (0°-60)
Knee extension ((90°-45°)

30% 1RM
60% LOP
N/I
N/I

4
30–15-15–15
30 s
3/week
8 weeks

83%
5
0
Yes

Isometric knee extension 
strength, VAS worst pain 
in the last week

39 (20/19)
26.7 ± 5.5

Leg press (0°-60)
Knee extension (90°-45°)

70% 1RM
0 mmHg
5 cm

3
7–10
N/I
3/week
8 weeks

80%
5
0
Yes

Hughes
2019 [7]
ACLR

14 (7/5)
29 ± 7

Leg press, unilateral 
(0°-90°)
Knee extension,, unilat‑
eral (0°-90°)

30% 1RM
80% LOP
11.5 cm

4
30–15-15–15
30 s
2/week
8 weeks

91.2%
2
0
Yes

Isometric knee exten‑
sion strength, Leg press 
strength (RM), patient-
reported pain

14 (10/2)
29 ± 7

Leg press, unilateral 
(0°-90°)
Knee extension, unilat‑
eral (0°-90°)

70% 1RM
None
None

3
10
30 s
2/week
8 weeks

87.5%
2
0
Yes
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reported 1 drop out (HL-RT: n = 1) and one adverse event 
(HL-RT: n = 1).

Risk of bias assessment
Our RoB assessment for all included trials is presented 
in Fig. 2. RoB was deemed low for the objective outcome 
measures reported in Giles et al. [17], while some concerns 
were found for the objective outcome measures reported 
by Rodrigues et al. [16], Bryk et al. [36], Constantinou et al. 
[18], and Hughes et al. [15]. High risk of bias was noted for 
Ferraz et al. [14] and Ladlow et al. [35] for their objective 
outcome measures. RoB for the patient reported outcome 
variables was deemed to be high in all included trials.

Certainty in evidence
The grading of certainty in evidence was low-to-very low 
for all outcome variables (Table 3).

Synthesis of results
Seven RCTs were included in the present meta-analyses 
[14–18, 35, 36]. A number of separate meta-analyses were 
performed to compare the intervention effect of BFR-RT 
vs. HL-RT on: knee extensor MVC [15, 17, 18, 36], Maximal 
(1–10 RM) dynamic knee extensor strength (knee extensor 
strength) [14, 16, 35], maximal (1–10 RM) dynamic leg press 
strength (leg press strength) [14–16, 35], quadriceps muscle 
CSA [14, 16, 17, 35], STS performance [14, 16], (Fig. 3), as well 

Table 2  (continued)

Study
Diagnosis

BFR RT 
N (m/f)
Age

Exercises Intensity 
Mean LOP
Cuff width

Sets 
Reps 
Rest between sets 
Frequency
Duration

Adherence 
Dropouts 
Adverse events
Supervision

Outcomes reported

HI RT

Ladlow
2018 [27]
Military Personal suf‑
fering from orthopedic 
lower limb injuries

14 (14/0)
33 ± 6

Leg press, bilateral 
(machine)
Knee extension, bilateral 
(machine)

30% 1RM
60% LOP
10 cm

4
30–15-15–15
30 s
2/day
3 weeks

100%
0
0
Yes

Knee extension strength 
(RM), Leg press strength 
(RM)

14 (14/0)
28 ± 7

Deadlift
Back squat
Lunges

6-8RM
None
None

4
6–8
180 s
3/week
3 weeks

90%
0
0
Yes

Rodrigues 2020 [8]
Rheumatoid Arthritis

16 (0/16)
59.6 ± 3.9

Bilateral leg press
Bilateral knee extension

20- 30%1RM
70% LOP
175 mm

4–5
15
60 s
2/week
12 weeks

86.2%
0
0
Yes

Leg press strength (RM), 
Sit-to-stand

16 (0/16)
58.0 ± 6.6

Bilateral leg press
Bilateral knee extension

50–80% 1RM
None
None

4–5
10
60 s
2/week
12 weeks

86.6%
1
1
Yes

Fig. 2  Risk of bias assessment
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Fig. 3  Forrest plots on muscle mass, muscle strength, and sit-to-stand performance
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as on patient reported function [14] and patient reported pain 
[14, 15, 17, 36] (Fig. 4).

No post-intervention differences were observed 
between BFR-RT and HL-RT on knee extensor 
strength, leg press strength, quadriceps CSA, STS 
performance, patient reported function, or patient 
reported pain (Fig.  3). In contrast, a small effect 
favoring BFR-RT was observed for knee extensor 
MVC (SMD = 0.47 [0.12,0.81]) (Fig. 3).

Discussion
The main finding in the present study was that BFR-RT 
and HL-RT produced comparable follow-up outcomes for 
dynamic lower limb muscle strength, knee extensor mus-
cle CSA, STS performance, and patient reported func-
tion and pain in patient groups involving patellofemoral 
pain syndrome [17, 18], knee osteoarthritis [14, 36], ante-
rior cruciate ligament reconstruction surgery [15], rheu-
matoid arthritis [16]; and musculoskeletal lower-limb 
overuse injury [35]. Interestingly, while training adher-
ence and dropout rates were equal between BFR-RT and 
HL-RT, fewer adverse events were noted with BFR-RT 
(0 vs. 5 adverse events). Notably also, larger follow-up 

scores in knee extensor MVC were observed in patients 
randomized to BFR-RT than HL-RT intervention (Fig. 3). 
Consequently, low-load BFR-RT may be considered a 
viable modality with no evidence of difference in follow-
up scores between BFR-RT and HL-RT in maximal mus-
cle strength, muscle mass, physical function and patient 
reported outcomes across various musculoskeletal and 
rheumatoid patient populations [14–18, 35, 36].

Maximal muscle strength
Notably, significantly higher follow-up scores in knee 
extensor MVC were observed in response to BFR-RT 
compared to conventional HL-RT. This observation 
may appear surprising given that all the individual stud-
ies measuring knee extensor MVC [15, 17, 18, 36] were 
unable to detect any between-group difference in the 
magnitude of change, and previous meta-analyses have 
reported either comparable gains in maximal muscle 
strength with BFR-RT vs. HL-RT [19] or larger gains with 
HL-RT [1]. However, as proposed in two previous stud-
ies [37, 38] an increase in unspecific strength (i.e. a task 
none-similar to the exercises performed) is more diffi-
cult to detect. Based on the 95%PI our results appear to 

Fig. 4  Forrest plots on post-intervention patient-reported outcomes
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conform with these previous results [37, 38]. Although 
interestingly, a sub-group analysis conducted by Giles 
et al. [17] showed greater improvements in maximal knee 
extensor MVC following BRT-RT vs. HL-RT in patients 
with patellofemoral pain syndrome affected by pain when 
exercising. This may suggest that if musculoskeletal pain 
is limiting the ability to perform resistance exercise, 
which may especially be the case during the early phase 
of rehabilitation, reducing the magnitude of mechanical 
strain on the affected limb using low exercise loads (20–
30% 1RM) and applying ischemia during and between the 
exercise bouts may have increased the tolerance towards 
and thereby effectiveness of the training performed.

Maximal dynamic muscle strength
In terms of maximal leg press- and knee extensor 
strength, no differences were observed between follow-
up scores for BFR-RT and HL-RT. However, as illustrated 
in Table  2, both BFR-RT and HL-RT appear to induce 
significant gains in strength from baseline to follow-up. 
Therefore, the results from the present meta-analyses 
appear to be consistent with the individual study findings 
since all studies included in the meta-analysis found com-
parable strength gains in leg press strength and dynamic 
knee extensor strength following BFR-RT vs. HL-RT 
(Table 2) [14–16, 35]. These observations support previ-
ous conclusions, suggesting that adaptations to strength 
usually is greater in the exercises that was trained (spe-
cific strength) [19, 37]. The present meta-analysis dem-
onstrate similar trend in patients suffering from various 
lower limb conditions.

To achieve gains in skeletal muscle size and strength, it 
is imperative to engage fast-twitch type II muscle fibers 
as these fibers generally demonstrate a more pronounced 
hypertrophic capacity compared to the slow-twitch type 
I muscle fibers [39, 40]. Notably, both HL-RT and low-
load BFR-RT appear to mediate gains in muscle strength 
and size, respectively, with no evidence of differences in 
follow-up scores in selected patient groups (present data) 
as well as in healthy populations which has been demon-
strated in previous systematic reviews [1, 19, 41].

Muscle cross‑sectional area
Preserving skeletal muscle mass is of vital importance 
in a number of patient populations [3, 13, 42]. However, 
due to post-surgical load restriction guidelines and/or 
pain restrictions [5, 42, 43], it can often be difficult to 
employ sufficiently high loading intensities to promote 
skeletal muscle hypertrophy in given individual patients. 
Therefore, BFR-RT has become increasingly popular 
in the rehabilitation of musculoskeletal disorders as its 
stimulating effects on muscle growth has become well-
established [3, 19, 44]. In accordance with Henneman’s 

‘size principle’ heavy training loads normally are required 
to achieve maximal muscle fiber recruitment within 
the exercising muscle, which is a prerequisite for evok-
ing adaptive changes in muscle morphology and neu-
ral activation [45, 46]. With low-load BFR resistance 
exercise, the resulting ischemic intramuscular environ-
ment give rise to metabolic stress mediators that have 
been suggested to increase type II muscle fiber recruit-
ment, induce muscle cell swelling resulting in increased 
mechanotransducive signaling, and to stimulate satellite 
cell proliferation and myonuclei accretion [39, 47], alto-
gether contributing to the hypertrophic response. The 
present observation indicating no evidence of difference 
in follow-up scores of BFR-RT and HL-RT in quadriceps 
muscle CSA in clinical patient groups comprising patel-
lofemoral pain syndrome [17, 18], musculoskeletal lower-
limb overuse injury [35], rheumatoid arthritis [16], and 
knee osteoarthritis [14, 36] (cf. Fig. 3) may not be surpris-
ing. In line with our study, although comprising a fewer 
number of studies, similar observations were reported 
in a recent meta-analysis involving patients with osteo-
arthritis and rheumatoid arthritis Thus, as suggested by 
Ladlow et al. [35], exercising at lower loading intensities 
reduces the joint forces hence reducing the degree of 
joint/injury-specific pain and ultimately allowing to reach 
higher levels of perceived exertion compared to HL-RT. 
Also, reducing the load can increase the overall greater 
training volume, which have been proven to equally 
efficient in increasing skeletal muscle CSA as HL-RT at 
60–80% 1RM [48].

Physical function
Only Ferraz et al. [14] and Rodrigues et al. [16] assessed 
STS performance after BFR-RT vs. HL-RT. STS function 
is commonly used test to assess physical function, espe-
cially in older patient populations and patients suffering 
from lower limb OA [25, 49, 50]. As indicated by the pre-
sent meta-analysis no significant difference in follow-up 
scores emerged between the groups engaging in BFR-RT 
compared to HL-RT. As all four groups displayed a sig-
nificant within-group improvement from baseline-to-fol-
low-up (Table 2), both BFR-RT and HL-RT appeared able 
to induce changes in physical function (Fig. 3).

Patient‑reported outcomes for pain and function
While improved following training (Table  2), none of 
the patient-reported outcome variables were selectively 
favored by BFR-RT or HL-RT. Interestingly, this obser-
vation is somewhat inconsistent with the findings of the 
individual studies. Thus, Hughes et  al. [15] found sig-
nificantly greater improvements in measures of patient-
reported physical function and pain over eight weeks 
of training with BFR-RT vs HL-RT. In addition, Ferraz 
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et  al. [14] noted that BFR-RT and HL-RT led to similar 
improvements in patient-reported physical function, 
while only BFR-RT improved pain. Contributing to the 
contradictory results, Rodrigues et al. [16] reported that 
only HL-RT improved patient-reported physical func-
tion while BFR-RT improved pain. Nonetheless, the 
present meta-analysis on selected patient-reported out-
come found no evidence of difference in follow-up scores 
between on these parameters.

Adherence and adverse events
Collectively, a high adherence (80–100%) to the pre-
scribed training was observed across studies for both 
intervention modalities. Further, a low number of drop-
outs were observed, with only Ferraz et  al. [14] report-
ing a relatively high dropout rate (10 of 32 participants). 
Also, four of a total of five reported adverse events across 
trials were observed by Ferraz et  al. [14], all caused by 
exercise-induced knee pain with HL-RT. A single adverse 
event was reported by Rodrigues et  al. [16], which was 
due to exercise-induced patellofemoral pain with HL-RT. 
Notably, no adverse events were reported with BFR-RT 
across a variety of patient populations. Thus, based on 
the present observations of equal follow-up scores in 
muscle strength, muscle mass, physical function (STS), 
and patient-reported outcomes along with high adher-
ence and no (BFR-RT) or only few (HL-RT) adverse 
events, patient preferences and motivation should be 
taken into account, when deciding on whether to apply 
BFR-RT or HL-RT in the rehabilitation setting. However, 
it is important to recognize that BFR-RT protocols are 
typically cautiously applied in clinical trials, resulting in 
relatively strict in- and exclusion criteria. Thus, the low 
number of adverse events observed in the trials included 
in the present meta-analysis may not necessarily reflect a 
general safety profile of BFR-RT, as more fragile patients 
often are selectively excluded from longitudinal exercise 
studies. Nonetheless, the present observations along with 
previous study reports suggest that high training adher-
ence and ample safety precautions can be achieved with 
the use of BFR-RT in selected clinical populations [21–
23, 51, 52].

Methodological considerations
In terms of methodological strengths, the present study 
conformed to guidelines outlined by the Cochrane Hand-
book for Systematic Reviews of Interventions [version 
6.2 (updated February 2021)], the PRISMA statement 
[26] and the GRADE Evidence to Decision framework 
[53]. Specifically, all inclusion and exclusion criteria were 
stated a priori, while all included trials used a RCT design 
and reported data on key exercise variables (i.e. intensity, 
type, frequency and duration).

A number of limitations may be mentioned with the 
present meta-analysis. First, the relatively low number 
of studies (n = 7, 303 patients) included in the present 
analysis along with relatively small populations in the 
individual studies limits the interpretation of the pre-
sent observations. This is also reflected by large PIs for 
all outcome parameters, suggesting that future studies 
may impact the results of the present study. However, 
since only RCTs were included and we applied a ran-
dom effects analysis model adjusted for CI due to the 
low number of studies included [33, 54], the present 
results may still represent a valid assessment of the 
follow-up scores between BFR-RT versus HL-RT in the 
rehabilitation of selected patient groups.

Basic exercise parameters such as training frequency, 
duration, load, and the total training volume for the 
lower limbs (specifically the quadriceps muscle) varied 
markedly between the included studies. For instance, in 
Ladlow et al. [35] the BFR-RT group trained twice daily 
for three weeks while the HL-RT Group performed 
three HL-RT per week for three weeks. However, it was 
beyond the scope of this systematic review to investi-
gate the specific dose–response relationship of BFR-RT 
versus HL-RT. Also, we allowed studies to be included 
with as little as eight planned exercise sessions. Obvi-
ously, eight sessions would result in a very low total 
training volume, however, to ensure inclusion of all 
studies comparing BFR-RT and HL-RT, we decided on 
this cut-off point.

Initially, we intended to also include patients suffering 
from various cardiovascular and medical conditions (cf. 
PROSPERO registration) to allow sub-group analysis on 
selected outcome parameters. However, no eligible tri-
als on patients suffering cardiovascular diseases were 
retrieved. Interestingly, from our title/abstract screen-
ing, we excluded several protocols registered on clinical-
trial.org on effect of BFR-RT in patients suffering from 
chronic obstructive pulmonary disease, type 2 diabetes, 
coronary heart disease patients, chronic heart failure 
patients, and patients with ischemic stroke. This warrants 
an update of the current systematic review and meta-
analyses within a few years.

Since the present meta-analysis included patients 
with a wide diagnosis range, considerable inter-individ-
ual variations were observed in terms of basic patient 
characteristics such as age, body mass, body mass 
index, and baseline measures of strength and physi-
cal activity. Consequently, the present study popu-
lations were quite inhomogeneous. Conversely, the 
objective outcome measures evaluated in the present 
meta-analysis (e.g. maximal isometric and dynamic 
muscle strength, muscle CSA, STS performance) were 
obtained using validated assessment methods usually 
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considered of high reliability. Given that the present 
meta-analysis evaluated follow-up scores between BFR-
RT versus HL-RT on a number of clinically important 
outcome variables, we believe that the present observa-
tions and conclusions may aid clinical decision making 
in the prescription of exercise-based rehabilitation in 
given patient populations.

The present study did not compare the interventions 
to a non-exercising control group. Therefore, we can-
not draw any conclusions on effectiveness of the BFR-RT 
and HL-RT. Also, none of the trials in the meta-analyses 
included a non-exercising control group. Ferraz et al. [14] 
and Rodrigues et  al. [16] included a group performing 
low-load resistance training (LL-RT) without BFR. Both 
studies demonstrated that LL-RT was inferior to BFR-RT 
og HL-RT in inducing gains in strength, physical func-
tion [14, 16]. In contrast, LL-RT appeared able to induce 
significant within-group changes in pain and patient-
reported physical function [14]. Thus, to determine the 
effectiveness of BFR-RT and HL-RT, future studies are 
warranted to include non-exercising controls.

Notably, the certainty in the estimates was deemed 
low-to-very low in the present meta-analyses, mainly 
resulting from a failure to adopt the intention-to-treat 
principle, lack of observer/tester blinding, inhomoge-
neous populations, differences in assessment methods, 
and small study populations. This means that the out-
come of present meta-analysis may change with the 
inclusion of future high-quality trials.

Conclusions
Based on the present meta-analysis, the current evi-
dence shows that BFR-RT and HL-RT produce com-
parable follow-up scores in maximal muscle strength, 
quadriceps cross-sectional area, physical function, 
and patient reported outcome measures of function 
and pain. BFR-RT and HL-RT resulted in similar exer-
cise adherence rates, and involved only few and minor 
adverse events. BFR-RT may be considered a feasible 
exercise method in the clinical rehabilitation setting. 
Certainty in the derived estimates was low-to-very low, 
prompting for future high-quality trials, including non-
exercising control groups.
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