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Abstract 

Background:  Previous research indicates the high relevance of optimal joint angles for individual isometric strength 
assessment. The objective was to compare lower limb peak isometric muscle strength abilities at the strongest joint 
angles with those of dynamic contractions in healthy young adults.

Methods:  Eighteen young male adults performed maximum concentric, isometric, and eccentric contractions of 
the ankle, knee, and hip flexors and extensors, and hip adductors and abductors in a randomized sequence on an 
isokinetic dynamometer (ISOMED 2000). Angular velocity was set at 60°/s. The peak of concentric contraction torque 
curves was used to define optimal joint angles best suited to generate maximum torque during isometric contrac-
tions. Maximum voluntary contraction torque of all contraction conditions was adjusted for limb weight and analyzed 
via a generalized linear mixed gamma regression model (GLMM).

Results:  The gamma GLMM revealed strongly significant effects for all three categorical covariates (contraction types, 
muscle group, and test order) ( p < 2× 10

−16 ). Eccentric contraction increases the muscle torque ( β̂k = 0.147 ) com-
pared to concentric contraction, and isometric contraction even more ( β̂k = 0.258 ). A moderate individual-specific 
variation was found (random effects standard deviation σb = 0.093).

Conclusion:  The results support the importance of optimal joint angles for isometric maximum strength assessment. 
When such conditions are given, isometric contractions can produce higher muscle torques than eccentric contrac-
tions in the lower body.
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Background
Muscular strength is the production of force against 
external resistance. It is therefore one of the most criti-
cal elements of human movement and a necessity to 
independently perform various tasks of daily living. 

Accordingly, strength assessments are regularly per-
formed for clinical, rehabilitative, or sporting perfor-
mance purposes [1–4], and a wide range of procedures 
exist for its assessment in different contexts [5–8]. Per-
formance on these strength assessments is generally 
influenced by a range of testing parameters, including 
contraction speed, joint angle, testing apparatus, and 
the number of repetitions, and therefore comparability 
between studies and their various assessment methods is 
often limited [8–12].
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One particularly influential aspect known to medi-
ate not only the acute production of muscular torque, 
but also gains in muscular strength via training pro-
grams, is the type of muscle contraction [9, 13]. It is 
widely accepted that the highest torques are generated 
during eccentric muscle contractions, with previous 
studies demonstrating that isokinetic eccentric contrac-
tions produce torques 22–60% higher than concentric 
contractions [12, 14]. Isometric contractions typically 
demonstrate lower peak torques than eccentric contrac-
tions, but higher peak torques than concentric contrac-
tions [15–17]. However, the production of isometric peak 
torque is mediated by the length of the muscle, and the 
highest torque is produced at the muscle length where 
there is largest overlap between actin and myosin fila-
ments [18, 19]. Consequently, isometric torque is highly 
variable based on muscle length, and joint angle must be 
carefully considered when testing for isometric strength 
[11, 20–23]. Accordingly, a closer proximity to the opti-
mal joint angle for maximal expression of isometric 
torque may explain why some studies report no differ-
ence in maximal torque production between eccentric 
and isometric contractions of the knee extensors [24] 
and plantar flexors [25]. Other explanations such as the 
lack of familiarization of the participants with eccentric 
contractions inducing a deficit of muscle activation [26] 
(compared with isometric contractions) that is not found 
in trained individuals [24] might also be responsible for 
the lack of difference between eccentric and isometric 
peak torque.

Indeed, previous studies comparing torque between 
contraction types have been limited by the use of arbi-
trarily selected and pre-determined joint positions [17, 
27–29], which potentially limits the peak torque reached 
during these contractions [30–32]. This leads to meth-
odological constraints since the magnitude of peak joint 
torques is only reasonable to compare when the optimal 
joint torque angle is applied during isometric contrac-
tions [11, 23]. Although some recommendations for an 
optimal joint angle for maximum torque are available 
[33–37], deviations through individuals anthropometry 
exist, and therefore optimal joint angles unique to each 
individual should be obtained beforehand in order to 
produce a true maximal isometric torque measurement 
[15]. However, this has not been included in previous 
studies comparing torque differences between contrac-
tion types.

The aim of this study was therefore to compare maxi-
mum voluntary contraction performance during iso-
metric contractions at individually-determined optimal 
joint angles with those of dynamic contractions across 
the main lower extremity joint actions. Novel insights 
about contraction type-dependent muscle torque could 

improve current knowledge about mechanisms of 
strength production.

Methods
Participants
Eighteen healthy males were recruited among the uni-
versity’s student population via word of mouth for vol-
untary study participation (age 24.8 ± 1.9  years, height 
181.6 ± 7.2  cm, mass 81.2 ± 8.5  kg). Participants were 
excluded from the study if they had an injury history 
in either the lower limb or torso within the previous 
six-month period. To ensure subjects would perform 
strength tests in a recovered state, they were instructed 
to not engage in strenuous physical activities within the 
two days before participation in the study. Participants 
signed written informed consent, and ethical approval 
was been obtained by the local Ethical Commission (pro-
tocol number: FSV 20/002) and all methods were per-
formed in accordance with the relevant guidelines and 
regulations.

Study design
Each participant attended a single session where the 
complete test was performed by an investigator with 
experience in isokinetic strength assessment.

To minimize the risk of bias through fatigue or warm-
up effects, a counterbalanced crossover design was used 
where participants were randomly assigned to one of 
three groups. Group 1 started with concentric followed 
by isometric and eccentric muscle contractions, Group 
2 also started with concentric contraction followed by 
eccentric and isometric muscle performance, and Group 
3 started with the eccentric followed by concentric and 
ending with isometric muscle contractions.

Assessment
Body height and weight were measured for each par-
ticipant at the beginning. The dominant limb was deter-
mined by asking participants for their leg preference to 
kick a ball [38], and used for strength testing. Muscle 
strength for all three contraction types was measured 
with the Isomed 2000 system (Isomed 2000®, D&R Ferstl 
GmbH, Hemau, Germany).

The individual optimal joint angle for isometric assess-
ment [23] of each muscle group was determined by 
using the peak of the torque curve during a maximum 
concentric contraction trial. In a preliminary test, joint 
angles derived from concentric tests produced higher 
peak strength values in subsequent isometric contrac-
tions than those derived from eccentric contractions. 
Therefore, we elected to use concentric contraction 
curves to define optimal isometric joint angles. To elimi-
nate the influence of limb weights on muscle torques, the 
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weight of the lifted respective extremity or part of it was 
annulled by the dynamometer [29].

After ensuring a full range of motion of the tested 
joint participants underwent a familiarisation and 
warm-up procedure lasting about five minutes. Dur-
ing the familiarization phase, participants tested the full 
range of motion of the single joint movement. This was 
especially important to be able to smoothly transition 
between flexion and extension. Also, subjects got famil-
iar with the graphical feedback curves of the dynamom-
eter. Afterwards, they kept warming up by practicing 
the movement with increasing but submaximal effort. 
Before testing subjects rested for 90 s after the warmup. 
While the order of contraction types was randomized, 
strength assessment was performed in a fixed order: (1) 
ankle plantarflexion and dorsiflexion, (2) knee exten-
sion and knee flexion, (3) hip extension and hip flexion, 
(4) hip abduction and hip adduction. Each muscle group 
and each contraction type were measured across two tri-
als, with 90  s rest between each. The assessments were 
performed with an angular velocity of 60° per second. 
Isometric muscle contractions were performed with a 
duration of 3  s. The higher peak torque reached across 
two trials was used for analysis.

Ankle plantarflexion and dorsiflexion
This assessment was performed in a seated position. 
Firstly, the subject’s foot was placed on the platform of 
the adapter that is designed for strength assessment of 
ankle plantarflexion and dorsiflexion. The length of the 
adapter was adjusted to the subject’s lower leg length. 
Next, the pivot point of the ankle joint (malleolus later-
alis) and the dynamometer were synchronized to each 
other. After that, the seat position was adjusted to the 
femur length and anthropometrics of the pelvis so that 
the knee joint bent at 90° while the foot was still posi-
tioned on the adapter. With this arrangement, the hip of 
the tested side was flexed at around 45° while the other 
side was at 90°. An additional support pole was set on the 
back of the tested leg to prevent the subject from pushing 
via leg extension on to foot platform and therefore influ-
ence plantarflexion strength results. Lastly, to prevent 
evasion movements the subject’s foot, ankle, and femur 
were fixed with straps, the pelvis was strapped with a 
belt, shoulders were restrained with shoulder pads. The 
tested range of motion ranged from − 20° of dorsiflex-
ion to 35° of plantar flexion. The 0° position for the ankle 
joint was defined as a neutral position where the joint is 
neither plantar nor dorsiflexed.

Knee extension and knee flexion
This test was also performed seated. At first, the seat and 
adapter length were adjusted to the femur and shank 

length, respectively. To transfer the strength of the thigh 
muscles to the pad, the adapter was fixed to the distal 
part of the shank slightly above the malleoli. Next, the 
pivot point of the knee joint (center of the knee joint) and 
the device were synchronized to each other. The backrest 
and seat were slightly inclined so that the hip angle was 
around 90°. The initial angle of the knee was 90°. Lastly, 
to prevent evasion movements the subject’s femur was 
fixed with straps, the pelvis was strapped with a belt, 
shoulders were restrained with shoulder pads.

The tested range of motion ranged from 5° to 90° of 
knee flexion.

Hip abduction and hip adduction
The assessment of hip abduction and hip adduction 
strength was performed in a laying position with hips and 
knee joints being in a neutral position at 0°. Participants 
laid on the right side to test the left hip muscles and vice 
versa. The pivot point of the frontal plane of the hip joint 
(femoral head) and the device was synchronized to each 
other and was adjusted for pelvis height. The adapter 
length of the testing device was adjusted to the femur 
length and was attached to the distal part of the femur. 
The lower hip and leg (not tested side) were slightly bent 
and the leg was fixed to the bench at the femur so that the 
leg and body were grounded and an elevation of the body 
(in case the participant was strong enough) was hin-
dered. Additionally, a belt was attached around the pelvis 
to further prevent evasion movement. The tested range 
of motion ranged from 0° to 60° of hip abduction.

Hip extension and hip flexion
This strength evaluation was performed with the sub-
ject laying on the back with hips and knee joints being 
in a neutral position at 0°. The pivot point of the sagittal 
plane of the hip joint (trochanter major) and the device 
was synchronized to each other. The adapter length of 
the testing device was adjusted to the femur length and 
was attached to the distal part of the femur. A belt was 
attached to the pelvis to avoid its elevation during hip 
extension. Furthermore, the shoulders were restrained 
with pads to prevent the participant from sliding off 
the bench and to provide opposition to express torque 
against the adapter. The non-testing leg was passively lay-
ing on the bench was not allowed to facilitate the move-
ment of the tested leg. The tested range of motion ranged 
from 10° to 100° of hip flexion.

Statistical analysis
Statistical analyses were performed with JASP (JASP 
Team 2020, version 0.12.2) and R (R Core Team, 2020; 
version 4.0.3). Descriptive data are reported as mean and 
standard deviation. Regression analyses via a (Gaussian) 
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linear mixed model and a gamma generalized linear 
mixed model (GLMM) with log-link were performed 
via the R package lme4 [39] to investigate the effects of 
different contraction and flexion types as well as of the 
group assignment on maximum muscle torque. Indi-
vidual-specific heterogeneity was accounted for by the 
inclusion of corresponding random intercepts. The mod-
els were compared via the Akaike information criterion 
(AIC; [40]) and by the investigation of residual plots, and 
the gamma GLMM turned out to be clearly superior with 
respect to both aspects.

Results
Figure 1 presents maximum muscles torque and standard 
deviation for each muscle group and contraction type. 
Mean and standard deviations of individually determined 
optimal joint angles used for isometric assessments are 
shown in Table 1.

The gamma GLMM revealed strongly significant effects 
for all three categorical covariates ( p < 2× 10−16 ), see 
Table  2, where concentric contraction, plantar flexion 
and test order group 1 where chosen as reference catego-
ries for the categorical covariates. Due to the used para-
metrization of the gamma density in combination with 
the log-link, precise interpretation of the effect sizes is 
difficult, but positive effects increase the muscle torque, 
while negative effects decrease it. For example, excentric 
contraction increases the muscle torque ( β̂k = 0.147 ) 
compared to concentric contraction, and isometric con-
traction even more ( β̂k = 0.258 ). Accordingly, all mus-
cles groups ( β̂k ∈ [0.191; 1.045] ) besides dorsi flexion 
( β̂k = −0.882) produced higher torques. Lastly, results 

show that subjects with the test order 1 were stronger 
compared to individuals in test orders 2 ( β̂k = −0.212) 
and 3 ( β̂k = −0.207) . A moderate individual-specific 
variation was found (random effects standard deviation 
σb = 0.093 ) (Table 1).

Discussion
This is the first study to directly compare peak torque 
between maximal voluntary concentric, eccentric and 
individualized isometric contractions of multiple joints. 
Our findings indicate that when individualized joint 
angles are applied, isometric contractions produced 
larger torques than eccentric in reference to concentric 
contractions. Further, concentric contractions always 
produced less torque than isometric contractions, and 
typically less than eccentric contractions.

The higher isometric peak torque compared to eccen-
tric peak torque contradicts the current understanding 
of the hierarchy of contraction types for maximum vol-
untary torque production. This understanding is based 
on numerous studies showing the outstanding role of 
eccentric contractions compared to concentric and iso-
metric contractions [15–17, 42, 43]. Differences between 
the results of our study and the existing literature may be 
driven by the methodological approach, primarily our use 
of individualized and optimized isometric joint angles as 
opposed to an arbitrarily determined joint angle that is 
shared between all participants [17, 27–29].

Indeed, the joint angles used closely resemble those 
used in other isometric strength assessment studies that 
were not designed to compare torque during different 
contraction types, including for hip flexion and extension 

Fig. 1  Maximum muscle torque and standard deviation for each muscle group and contraction type



Page 5 of 8Stotz et al. BMC Sports Science, Medicine and Rehabilitation           (2022) 14:13 	

Table 1  Mean and standard deviation of maximum torque 
angles during maximum concentric contractions (PF = plantar 
flexion, KF = knee flexion, HAb = hip abduction, HF = Hip flexion, 
zero-degree-position is defined as neutral upright standing 
according to [41])

Muscle groups Angle at peak MVC

Ankle plantarflexors 7° ± 4° PF and 90° KF

Ankle dorsiflexors 20° ± 4° PF and 90° KF

Knee flexors 37° ± 14° KF and 90° HF

Knee extensors 65° ± 5° KF and 90° HF

Hip abductors 13° ± 5° HAb

Hip adductors 25° ± 12° HAb

Hip flexors 25° ± 6° HF

Hip extensors 75° ± 11° HF

Table 2  Results of a gamma GLMM include individual-
specific random intercepts; the global intercept represents the 
reference level of the three categorical predictors (i.e., concentric 
contraction, plantar flexion, test order 1), p value *** < 0.001

Estimate Std. error t Value Pr ( >|z|)

(Intercept) 4.722 0.009 527.67 < 2× 10
−16 ***

Eccentric 
contraction

0.147 0.008 17.50 < 2× 10
−16 ***

Isometric 
contraction

0.258 0.009 29.34 < 2× 10
−16 ***

Dorsi flexion  − 0.882 0.009  − 94.52 < 2× 10
−16 ***

Knee flexion 0.191 0.009 20.64 < 2× 10
−16 ***

Knee extension 0.778 0.030 25.60 < 2× 10
−16 ***

Hip abduction 0.235 0.009 26.90 < 2× 10
−16 ***

Hip adduction 0.297 0.009 31.97 < 2× 10
−16 ***

Hip flexion 0.495 0.009 54.58 < 2× 10
−16 ***

Hip extension 1.045 0.009 121.89 < 2× 10
−16 ***

Test order 2  − 0.212 0.009  − 23.57 < 2× 10
−16 ***

Test order 3  − 0.207 0.009  − 22.93 < 2× 10
−16 ***

[44], hip adduction and abduction [36], and knee flexion 
and extension [30, 33, 37]. By individually optimizing the 
joint angle to the point where the torque was highest, we 
maximized the torque-length relationship of the muscle 
by theoretically locating the point with the most filament 
overlap [18, 19, 45]. This may help to explain why we saw 
higher isometric torques than other studies because they 
used different joint angles and therefore different mus-
cle lengths which did not maximize this torque-length 
relationship. However, the sliding filament theory was 
described at the microlevel of a sarcomere, and therefore 
applying the principles to a whole muscle is a complex 
process [45]. Factors such as transmission efficiency [46], 
muscle architecture [47] including geometric arrange-
ment of muscle fibers [48] and configuration of the lever 

system of the joint [49] influence contractile properties of 
the muscle, each of which may uniquely influence the iso-
metric torque an individual can produce at a given angle 
[37].

Additional underlying physiological mechanisms 
beyond the overlap of filaments may also explain why 
the joint angle-optimized isometric contractions demon-
strated higher torques than other contraction types. For 
example, twitch interpolation studies indicate that during 
maximal anisometric contractions, voluntary activation 
of the quadriceps femoris is significantly lower than dur-
ing maximal isometric contractions of the same muscle 
[50]. This may be explained by neuromuscular inhibi-
tion levels unique to anisometric contractions, at both a 
spinal and cortical level [51]. Further, antagonist muscle 
co-activation is known to be specific to the joint being 
tested and potentially specific to the mode of contrac-
tion [52], which may explain differential effects between 
different muscle groups and actions in the current study. 
Finally, muscle activation during isometric contraction 
fluctuates according to joint angles not just for the ago-
nist muscle [30] but synergist muscles too [53, 54], and so 
individually adjusting the angle of assessment may have 
facilitated greater synergist muscle contributions, driving 
the achievement of higher peak torques. Another plau-
sible explanation for our findings is that without a true 
familiarization period, the methods of testing may have 
underestimated maximal eccentric torque. Due to the 
commonly reported difficulties in achieving full activa-
tion of a muscle by voluntary command during eccen-
tric contractions [55], it is possible that deficits in motor 
control may have influenced maximal eccentric torque 
magnitude.

Besides the novel findings that lower body muscles 
produced higher isometric than eccentric torques, we 
found that concentric contractions produced the lowest 
peak torque values, which is supported by a considerable 
volume of existing literature for hip extension [12], hip 
abduction [28], knee extension, and flexion [17, 27, 29, 
50, 56, 57], ankle plantarflexion [17, 25] and ankle dorsi-
flexion [17, 58–60].

Beyond the use of individualized isometric joint angle, 
other elements of experimental design potentially influ-
enced divergent results between studies. This includes 
the use of an isokinetic angular velocity of 60°/s while 
[28] used 13°/s and [15] used 36°/s. In our study, only 
young male participants were included while [17, 27], 
also included female participants, and [29] measured 
female subjects exclusively. We adjusted all measure-
ments for limb weight while all but two other studies [28, 
29] did not. Lastly, it should be noted that early reports 
simply compared absolute torque values between con-
traction modes, therefore using insufficient analysis to 
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draw reasonable statistical conclusions regarding the 
hierarchy of contraction modes [17, 28].

Limitations
The current study has some limitations that must be con-
sidered alongside the results. Because we used a GLMM 
with dummy encoding for the three categorical predic-
tors, all their effect sizes ( p < 2× 10−16 ) are directed 
towards the chosen reference categories (concentric con-
traction, plantar flexion and test order group 1). Hence, 
we can only interpret the effect of one covariate when the 
other two remain constant. This complicates the compar-
ison between contraction types within one muscle group 
(comparison of more than one covariates). A particular 
example is that dorsiflexion eccentric torque was higher 
than isometric and eccentric torque but this information 
is not detectable in the model. Moreover, as a gamma 
GLMM with log-link clearly outperformed a Gaussian 
linear mixed model, this also complicates the precise 
interpretation of the regression coefficient estimates. 
Only one angular velocity of 60°/s was used for the com-
parison of maximum torque between contractions types. 
Previous studies have indicated that maximum isokinetic 
torque generally gets lower with higher angle velocities 
[23, 29], and also that this force–velocity relationship 
may be contraction-type dependent [61, 62]. It has to be 
noted additionally, that previous research has shown that 
the highest torque angle shifts with increasing angular 
velocity [63]. In this study, we used the optimum torque 
angle for isometric measurement derived from the torque 
curves from the concentric contractions. Although we 
found the highest torque angle for every participant, an 
even better torque angle might exist with the assessment 
of concentric torque with a velocity below 60°/s. Still, this 
approach is novel and previous works measured isomet-
ric torques through an array of angles while potentially 
not always finding the optimal one. Another limitation of 
this study is the absence of a true familiarization period 
of the participants with eccentric contractions. This 
might trigger a repeated-bout effect and allow for a lim-
ited so-called descending command inhibition [64]. Also, 
no measure of voluntary activation such as electromyo-
graphy and voluntary activation via twitch interpolation 
techniques was provided to judge possible activation 
deficit during eccentric contractions. An alternative to 
a separated familiarization session could have been the 
usage of isometric pre-tension contraction before the 
onset of each eccentric contraction to maximize volun-
tary activation [26]. Lastly, our study was performed with 
young healthy males, and therefore the results may not 
be generally transferable to other populations like seniors 
or patients with specific pathological conditions.

Future studies are therefore encouraged to examine 
maximum torque of the three contraction types in other 
populations [65], examine strength relationships in both 
genders and also test other upper-body muscle groups. 
With the loss of strength being one of the most impor-
tant factors for functional decline in the elderly [66], 
new insight about contraction-specific torque could help 
developing intervention programs for the prevention of 
falls and sarcopenia.

Conclusion
Maximum torques of the lower body differ significantly 
between contraction types, and this may be specific to the 
joint action, muscle groups used and the context of the 
testing. While further studies including more mechanistic 
insight are encouraged, our current findings suggest that 
at individually adjusted joint angles, maximum isomet-
ric torque can exceed eccentric and concentric torque in 
lower extremity joint actions. We, therefore, recommend 
that individually-optimized joint angles should be obtained 
prior to comparing maximum torques between isomet-
ric and dynamic contractions. Further, isometric strength 
assessments before and after training should maintain 
identical joint angle between tests due to the significant 
influence on the torque generated by a muscle group. Com-
bined, our findings emphasise the need for a suitably con-
trolled testing environment, and add to existing knowledge 
about mechanisms of strength production which may be 
useful not only for the assessment of muscular strength, but 
also the development of contraction type-specific interven-
tion programs in a range of populations and contexts.
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