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Abstract 

Background:  Running is a very popular sport among both recreational and competitive athletes. However, partici‑
pating in running is associated with a comparably high risk of sustaining an exercise-related injury. Due to the often 
multifactorial and individual reasons for running injuries, a shift in thinking is required to account for the dynamic pro‑
cess of the various risk factors. Therefore, a machine learning approach will be used to comprehensively analyze bio‑
mechanical, biological, and loading parameters in order to identify risk factors and to detect risk patterns in runners.

Methods:  The prospective longitudinal cohort study will include competitive adult athletes, running at least 20 km 
per week and being free of injuries three months before the start of the study. At baseline and the end of the study 
period, subjective questionnaires (demographics, injury history, sports participation, menstruation, medication, psy‑
chology), biomechanical measures (e.g., stride length, cadence, kinematics, kinetics, tibial shock, and tibial accelera‑
tion) and a medical examination (BMI, laboratory: blood count, creatinine, calcium, phosphate, parathyroid hormone, 
vitamin D, osteocalcin, bone-specific alkaline phosphatase, DPD cross-links) will be performed. During the study 
period (one season), continuous data collection will be performed for biomechanical parameters, injuries, internal and 
external load. Statistical analysis of the data is performed using machine learning (ML) methods. For this purpose, the 
correlation of the collected data to possible injuries is automatically learned by an ML model and from this, a ranking 
of the risk factors can be determined with the help of sensitivity analysis methods.

Discussion:  To achieve a comprehensive risk reduction of injuries in runners, a multifactorial and individual approach 
and analysis is necessary. Recently, the use of ML processes for the analysis of risk factors in sports was discussed and 
positive results have been published. This study will be the first prospective longitudinal cohort study in runners to 
investigate the association of biomechanical, bone health, and loading parameters as well as injuries via ML models. 
The results may help to predict the risk of sustaining an injury and give way for new analysis methods that may also 
be transferred to other sports.

Trial registration: DRKS00026904 (German Clinical Trial Register DKRS), date of registration 18.10.2021.
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Background
Running is one of the most popular sports worldwide. 
Despite strong evidence for the health benefits, the 
incidence of musculoskeletal overuse injuries remains 
high. In a recently published systematic review, almost 
half of the 22,823 runners sustained an injury dur-
ing the respective observation period [1]. Depending 
on the study design and investigated cohort the injury 
rates vary between 19–79% [2, 3]. For instance, long-
distance runners but also novice runners are more 
susceptible to sustain an injury compared to short-dis-
tance runners, and recreational runners [4, 5]. No dif-
ference, however, was found for the overall injury rate 
in females (20.8 injuries per 100 runners) and male run-
ners (20.4 injuries per 100 runners) [6].

Many studies have methodological weaknesses, e.g., 
retrospective data collection, lack of load monitoring, 
lack of multivariable analysis of external and internal 
risk factors, or diagnosis based on patient self-report 
[3, 7]. Furthermore, the multifactorial influence of 
external and internal risk factors on musculoskeletal 
injuries—e.g., bone stress injuries, tendinopathies, and 
muscle injuries—has not yet been sufficiently clarified 
[8, 9]. Despite the multifactorial nature, the underly-
ing etiology of overuse injuries can be explained by 
an imbalance between load and recovery [7, 10, 11]. 
Thus, runners with rapidly increased training volume as 
well as runners with too low training intensity showed 
an increased risk of injuries [12, 13]. Based on this 
information, the identification of risk factors for the 
development of running-related injury should occur 
simultaneously with objective training load monitoring.

In addition to loading parameters, internal (e.g., 
anatomy, biomechanics, musculoskeletal tissue quality) 
and external characteristics (e.g., environment, surface, 
footwear) are discussed as important risk factors [9, 
14]. Since running injuries are predominantly attribut-
able to overuse [1, 15], the combined analysis of bone 
and muscle status, biomechanics and the individual 
running technique represent an important approach to 
identify risk factors for these injuries. In this context, 
for example, vitamin D, bone density and microarchi-
tecture [16, 17], ground reaction forces, load rates, 
foot strike, and cadence are discussed as important 
parameters [8, 16–21]. Current research in the field of 
sports injuries indicates that a shift in thinking from 
single risk factors to individual injury patterns that are 
dynamically influenced by a variety of mediators is nec-
essary [22].

To account for the individual approach and the high 
variation of responsible mediators, different machine 
learning (ML) models have been used in the past to ana-
lyze risk factors in sports [23, 24]. ML models can learn 
the relationship between input and output variables 
solely from large amounts of example data with some 
kind of optimization algorithm. This enables the predic-
tion of future outcomes from new input data without the 
need for manually programmed functions [25]. Some 
of these predictive modelling techniques used in asso-
ciation with sports injury prediction and prevention are 
for example Artificial Neural Networks, Support Vector 
Machines, and Random Forests [23]. Especially in the 
analysis of risk factors and the prediction of team sports 
injuries [23] or neuromuscular and musculoskeletal 
pathologies [26], promising results have been presented 
utilizing ML models in previous studies.

In contrast to the methods mentioned so far, a new 
method called Deep Gaussian Covariance Network 
(DGCN) [27] is used as the ML model. This represents 
a unique combination of neural networks and Gaussian 
processes (GP) [28]. Gaussian processes are probabilis-
tic ML models and thus offer the advantage of predicting 
model uncertainty. This means that the prediction of pos-
sible injuries can always be accompanied by a prediction 
of the certainty of the model.

The objective of the present study is to (a) prospec-
tively monitor the injury incidence and characteristics, 
(b) determine internal and external risk factors and their 
interaction, and (c) evaluate the association of risk fac-
tors via machine learning processing to predict the risk of 
injuries in runners.

Methods
Study design
The athlete’s injury monitoring and determination of the 
internal and external risk variables will be conducted in a 
prospective observational cohort study. During a season 
(approximately ten months), 120 athletes will be moni-
tored for injuries, internal and external load, and biome-
chanical running parameters (Fig.  1). The study will be 
performed following the Good Clinical Practice guide-
lines [29] and in line with the Declaration of Helsinki. 
The present study protocol is prepared according to the 
Standard Protocol Items: Recommendations for Inter-
ventional Trials (SPIRIT) 2013 Statement [30].

Keywords:  Sports injuries, Risk factor analysis, Machine learning models
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Ethical standard
Ethical approval was obtained through the local ethics 
committee of the chamber of Physicians Hamburg (refer-
ence no.: 2021-10458BO-ff). All potential subjects need 
to give their informed consent before study enrolment. 
Based on the study description, participants are informed 
that they can withdraw their consent to participate at 
any time. This does not result in any disadvantage for the 
subject and the data are excluded from the analysis and 
deleted.

Participants
Potential participants will be recruited from running 
clubs and associations with competitive runners. Addi-
tionally, a call for participation will be made through 
social media and local running stores. The study will 
include female and male runners aged 18 years and older 
with a weekly training volume of 20 km or more (annual 
average at the time of study inclusion). Competitive run-
ners are defined by estimated participation in at least one 
competition/race during the study period. Athletes can 
only be included in the study if they have been free of 
injury for at least 3 months.

Assessment procedure
The study procedure provides a baseline assessment 
including (1) biomechanical measures, (2) subjective 
questionnaires, and (3) a clinical musculoskeletal exami-
nation at the beginning and the end of the study period 
(season of 10  months). In addition, biomechanical data 
on running parameters, internal and external load, and 
injuries will be collected continuously throughout the 

season. The tests will be conducted in three different 
locations. The biomechanical testing will be performed 
on a university outdoor running track and in a biome-
chanics laboratory. The clinical testing will take place 
at the specialized outpatient clinic for musculoskeletal 
disorders. All patients will undergo the medical exami-
nation and the biomechanical measurements within 
7 days. Before the biomechanical measurement, a written 
informed consent will be required from all participants, 
and everyone will obtain a standardized study description 
including information about the assessment procedure.

Baseline questionnaires
Before performing the biomechanical assessments, the 
athletes have to complete a baseline questionnaire includ-
ing items about demographics and anthropometrics 
(weight, height, body mass index, age, sex), injury his-
tory, running performance, and history (weekly training 
volume, mean running speed, competition distance, per-
sonal bests, change in training volume and intensity dur-
ing the past 12 months), sports participation in addition 
to running, menstruation, and medication. The baseline 
questionnaire is based on a survey published by Tenforde 
and colleagues identifying risk factors for running-related 
bone stress injuries (Tenforde et al., 2013). Furthermore, 
the athletes will be asked to answer questionnaires about 
their psychological health. For this purpose, standard-
ized questionnaires for depression (CESD-R: Center for 
Epidemiologic Studies Depression Scale-Revised) and 
anxiety (STAI-Test: State-Trait-Anxiety Inventory) will 
be used [31–34]. The survey instrument CESD-R is freely 
available. The STAI- Test requires a license that can be 
purchased on the homepage www.​mindg​arden.​com.

Biomechanical baseline assessments
To record the individual running patterns, all partici-
pants will complete a baseline reference run on a running 
track and a biomechanics laboratory assessment.

Running track assessment
The baseline reference run will be measured by wireless 
inertial measurement units (IMUs) and magnetic gates 
integrated into the track (SmarTracks Diagnostics DX3.5, 
Humotion GmbH, Muenster, Germany). The magnetic 
gates are placed below the 400 m running track at a dis-
tance of 50 m as well as every 10 m in the section of the 
100  m home straight. Each of the three running units 
starts one meter in front of a magnetic gate of the SmarT-
racks System which is considered as starting line.

In combination with the IMU, the system can collect 
spatiotemporal parameters about e.g. the distance, dura-
tion, and intervals [35]. Further, the integrated technology 

Fig. 1  Study flow

http://www.mindgarden.com
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of the sensor can detect various characteristics of the 
running patterns by acceleration and rotation signals. We 
primarily focus on the parameters stride length, cadence, 
ground contact time, tibial shock, and tibial acceleration 
[36–39]. The IMUs have a size of 50 × 10 mm and will be 
fastened around the waist (sensor on fifth lumbar spine 
– L5) with the help of an elastic waist belt. In addition 
to the sensor placed on L5 (500 Hz), one sensor is placed 
antero-medial on the distal tibia (1000 Hz), 5 cm above 
the malleolus, one in each leg. This application has been 
successfully used in previous investigations, due to the 
flat bone structure of the tibia at this spot [40, 41].

The reference run includes (1) a standardized warm-up 
of 800  m at a self-selected speed, (2) followed by three 
sprinting conditions (one submaximal, two maximal) of 
60 m, and (3) an incremental run until the athlete is com-
pletely exhausted. The incremental running protocol is 
developed based on standardized incremental protocols 
for determining e.g. lactate thresholds [42]. The athletes 
start the incremental run with a pace of about 2 m/s and 
increase speed by about 0.3 m/s every 400 m. The dura-
tion of the incremental run depends on the athlete’s 
performance, which means it will be finished when the 
athlete no longer can maintain the predetermined pace 
of the lap. For the reason of practicability for the ath-
letes, the speed will be controlled with a standardized 
running watch (Forerunner 245, Garmin, Schaffhausen, 
Switzerland).

Biomechanics laboratory assessment
The biomechanics assessment in the laboratory consists 
of a 45-min run on an instrumented treadmill (h/p/cos-
mos sports & medical GmbH, Nussdorf-Traunstein, 
Germany), with a constant incline of 0.4%, validated to 
be comparable to outdoor running (Mugele et al. 2018), 
and several overground running trials. Prior to the pro-
tocol, a familiarization will be conducted on the treadmill 
at a self-selected moderate running speed for five min-
utes which also serves as a warm-up. Thereafter, another 
five minutes will be given for joint mobilization and 
stretching.

Before and after the 45-min treadmill run, 10 over-
ground trials over a level running track with a distance 
of 10 m will be performed at the same running speed as 
the treadmill run. Running speed during the overground 
runs will be recorded using two light barriers (Witty-
GATE, Microgate Srl, Bolzano, Italy). Subjects will be 
wearing their preferred running shoes. To quantify the 
state of fatigue, subjects will be asked to report their rat-
ing of perceived exertion according to the Borg scale at 
5%, 50% and 95% of the run.

The running speed for the assessments will be set con-
stant and corresponding to 110% of the participants’ 

average running speed during their continuous training 
runs with comparable duration over the three months 
prior to the day of the assessment.

During the trials, kinematic data will be collected using 
14 color video cameras (12 × Miqus Hybrid, 2 × Miqus 
Video, Qualisys AB, Gothenburg, Sweden) at 150  Hz, 
then it will be processed by the artificial intelligence-
based Theia3D motion capture software (Theia Marker-
less Inc., Kingston, ON, Canada), and further evaluated 
using Visual3D (C-Motion Inc., Germantown, MD, USA). 
Additionally, during the treadmill measurements, plantar 
pressure data will be recorded in sync with the kinematic 
data with a pressure plate integrated into the treadmill 
(FDM-T, Zebris Medical GmbH, Weitnau, Germany) at 
300  Hz. Data will be recorded over 30  s periods at 5%, 
50%, and 95% of the treadmill run total time.

Similarly, during the 20 overground trials, three-
dimensional ground reaction forces and moments will 
be captured employing two force platforms (Advanced 
Mechanical Technology, Inc., Watertown, USA) at 
1200 Hz, synced with the camera system. Five trials with 
each leg hitting the center of one of the force platforms 
will be required.

Furthermore, during all trials (instrumented treadmill 
and overground 10  m track), accelerometer and gyro-
scope data will be captured with a custom-made inertial 
sensor system (1000 Hz). The sensors have a dimension 
of 28 × 45 × 12 mm and will be placed at both feet, at the 
tibial tuberosities of both legs, at the sacrum, and the 
region of the xiphoid process with elastic straps (six sen-
sors in total).

From the assessments, relevant kinematic, kinetic, and 
spatiotemporal parameters will be calculated (Table  1) 
based on two recent systematic reviews [8, 43] investi-
gating possible biomechanical risk factors for running-
related injuries.

Musculoskeletal baseline assessment
The initial clinical assessment is a musculoskeletal and 
sports medicine examination. As part of this assessment, 
a blood sample will be taken (< 20 ml) to analyze relevant 
parameters of bone and muscle status: The biochemical 
analysis includes hematologic parameters (hemoglobin, 
erythrocytes, hematocrit, mean corpuscular volume 
(MCV), mean corpuscular hemoglobin (MCH), mean 
corpuscular hemoglobin concentration (MCHC), red cell 
distribution width (RDW), leukocytes, thrombocytes), 
serum electrolytes (potassium, sodium, chlorine, cal-
cium, phosphate, magnesium), markers of renal function 
(creatinine, glomerular filtration rate (GFR)), markers of 
liver function (γ-glutamyl transferase (GGT)), alkaline 
phosphatase (ALP), creatine kinase (CK), C-reactive pro-
tein (CRP), serum electrophoresis (including albumin, 
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α1-, α2-, β-, and ɣ-globulin) (44). Moreover, urinary cre-
atinine excretion is tested. To evaluate additional meta-
bolic or endocrine diseases, thyroid-stimulating hormone 
(TSH), gastrin, ferritin, vitamin B12, folic acid, parathy-
roid hormone (PTH), 25-hydroxycholecalciferol (25-OH-
D), osteocalcin, procollagen type 1 n-terminal propeptide 
(P1NP), bone-specific alkaline phosphatase (BAP), serum 
bone resorption marker carboxy-terminal collagen 
crosslinks (CTX), as well as the urinary bone resorption 
marker deoxypyridinoline/crea (DPD) are measured. In 
addition, pyridoxal-5-phosphate (PLP) levels are evalu-
ated as a potential indicator of a reduced ALP activity 
[44]. Depending on the clinical examination and skeletal 
risk profile of the athletes, the physicians will decide on 
further examinations to assess bone quality (e.g., bone 
densitometry and/or bone microstructure analysis) [45].

Continuous data collection during the season
During the season each participant will be equipped with 
one IMU (SmarTracks Diagnostics DX 5.0, Humotion 
GmbH, Muenster, Germany) and a belt for application 
on L5. The IMU should be worn in every training ses-
sion and during competitions/races. To verify the sen-
sor’s data, a training diary will be collected after each run 
to record the subjective load measured by the Perceptual 
Wellness Questionnaire [46], and Rating of Perceived 
Exertion [47] as well as information about training con-
tent and conditions (environment, shoes, surface, etc.). 
Objective load data including distance, time, and velocity 
will be collected by the athletes’ running watches and the 
following upload on a social network app (www.​strava.​
com). Injury monitoring is performed by the Oslo Sports 

Trauma Research Center Questionnaire in its German 
version [48–50] and will be answered by the athletes once 
a week. The questionnaire and the training diary will be 
provided via the app AthleteMonitoring (athletemonitor-
ing.com; FITSTATS Technologies, Inc., Moncton, N-B, 
Canada).

In case of an injury, athletes will be advised to visit the 
participating sports medicine physicians for adequate 
medical diagnosis, possible imaging, and therapy. Fur-
thermore, the above-mentioned biomechanical labora-
tory assessment will be repeated if possible (determined 
by mutual decision of participant and sports medicine 
physicians). To control recovery after the occurrence of 
an injury the athletes have to answer the University of 
Wisconsin Running Injury and Recovery Index in its Ger-
man version [51, 52].

Outcomes
The primary outcome of the study is the occurrence of 
injuries to analyze their association to biomechanical, 
skeletal, or loading parameters by machine learning.

In more detail, the outcome of the study will be pre-
sented as:

(a)	 Incidence and severity per 1000 exposure hours of 
overall injuries in competition and training of run-
ning athletes.

(b)	 Prevalence of nutritive deficits (e.g., vitamin D 
deficiency) and skeletal alterations. Relationship 
between clinical baseline assessment and incidence 
of bone stress injuries during the study period.

Table 1  Overview of possible biomechanical risk factor assessment in biomechanics laboratory based on [8, 43]

Treadmill Overground

Kinematics Sagittal ankle angle at footstrike

Sagittal knee angle at footstrike

Peak ankle dorsiflexion angle

Foot strike pattern

Peak hip adduction angle

Peak ankle eversion velocity

Peak ankle eversion angle

Peak knee flexion angle

Kinetics Vertical plantar peak force (underneath metatarsals II and V) Vertical ground reaction force peak

Absolute force–time integral Vertical impact loading rates

Anterior–posterior displacement of the center of force Vertical average loading rates

Velocity of anterior–posterior displacement Internal knee abduction moment impulse

Lateral/medial directed force distribution Peak external knee adduction

Vertical impact peak

Temporo-spatial Cadence Ground contact time

Step length Asymmetry in ground contact time

http://www.strava.com
http://www.strava.com
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(c)	 Identification of individual running patterns (stride 
length, cadence, ground contact time, tibial shock, 
and tibial acceleration) measured by IMUs and 
analysis of the relationship between biomechanical 
running parameters and the incidence of running-
related injuries.

(d)	 Analysis of further influencing variables (training 
periodization, subjective stress perception, objec-
tive stress, gender, running experience, surface, etc.) 
on the incidence of running-related injuries.

(e)	 Biomechanical changes occurring before and after 
an injury

Data processing
All collected data will be anonymized, stored, and saved 
in the main computer, password-protected. A weekly log 
will be controlling for new injuries throughout the sea-
son. As mentioned, the questionnaires will be available 
from digital means to the researchers, as well as the clini-
cal personal data.

The synchronized data from the laboratory-based 
assessments will be processed in Visual3D (C-Motion 
Inc., Germantown, MD, USA), according to the over-
ground running trials, and the instrumented treadmill 
run. A Visual3D report will be created based on com-
monly reported foot strike and toe-off events, including 
but not limited to kinematic and kinetic data (Table  1). 
Similarly, IMU data will be processed in Matlab or 
Pyhthon 3 and a biomechanical report will be created as 
well.

The reference data from the Humotion IMU will be 
stored in the SmarTracks Diagnostics DX 5.0 software 
(Humotion GmbH, Muenster, Germany) on the main 
computer. Post-processing will be carried out from the 9 
channels (accelerometer, magnetometer, and gyroscope) 
by in-house algorithms from Humotion GmbH.

A master data table will be created with all avail-
able variables, categorized by subject and per day/week 
(continuous IMU season data and daily/weekly ques-
tionnaires), including a column to indicate if the subject 
suffered an injury (injury label).

Statistical analysis
Data cleaning, feature selection, and validation will 
be processed, then multivariate analyses and machine 
learning methods might detect data changes related to 
an injury. Moreover, demographic and anthropometric 
data will be processed with descriptive statistics. Char-
acteristics of the population regarding gender or other 
group variables will be compared using t-tests, Wil-
coxon signed-rank tests, X2 tests, or Fishers’ exact test 

according to their parametric or non-parametric distri-
bution (injured vs non-injured groups). The statistical 
analysis will be performed using statistical software R 
(http://​www.R-​proje​ct.​org) or SPSS 25 (SPSS Inc., Chi-
cago, Illinois, USA). The level of significance will be set 
at p < 0.05.

Also, other dimensionality reduction techniques might 
be employed, such as Principal Component Analysis, to 
set the weight of certain variables into the machine learn-
ing models.

Machine learning models
The collected data will be analyzed using the probabil-
istic ML model Deep Gaussian Covariance Network 
(DGCN). For this purpose, all measured sensor data are 
used as input parameters X after their processing. The 
output parameters Y  represent for example the ground 
contact time as well as other variables derived to deter-
mine the injury risk. The model learns the functional 
relationship Y = f̂ (X)+ ∈, where ∈ represents the pos-
sible model error. Thereby f̂ (X) is a Gaussian process 
( GP ): f̂ (X) ∼ GP(µ(X),K (X ,X)) with its mean function 
µ(X) and its covariance matrix K (X ,X) . In the DGCN 
approach, the free parameters in this model, as well as 
the covariance matrix, are determined by a coupled neu-
ral network such that all free parameters (which must 
be trained in order to learn the relationship between X 
and Y  ) are dependent on the data point to predict (see 
Fig.  2 for a schematic overview of the coupling). This 
enables the model to represent non-stationary relation-
ships between X and Y  in a way that most other station-
ary methods cannot. For example, when the relationship 
between X and Y  changes due to approaching injuries or 
different running behaviors such as sprints. In contrast 
to standard Gaussian processes that can only be applied 
to a limited number of data points, DGCN can apply the 
Gaussian process to any number of data points due to its 
coupling with neural networks. This is possible because 
batch training can be applied as is common with neural 
networks. In addition, DGCN allows taking into account 
the time history of the past data like recurrent neural 
networks (RNN) can [53].

After the model has been trained, it can be used for 
new predictions such as injury risk prediction. The 
already mentioned advantage of a probabilistic ML 
model is that the uncertainty of the predicted injury risk 
can also be given, e.g., in the form of a confidence inter-
val. For example, a high predicted injury risk with a wide 
confidence interval can be less dangerous for the runner 
than a medium injury risk with a very narrow confidence 
range. This type of prediction evaluation is not possible 
with non-probabilistic modeling approaches.

http://www.R-project.org
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Finally, methods of global variance-based sensitivity 
[54] analysis will give us a deeper understanding of the 
learned relationships between the input signals and, for 
example, the risk of injury. The influence or importance 
of the input parameters used in the model on the out-
put variable is determined with the help of the model. 
As a result, ranking of the important parameters is pos-
sible as shown in Fig. 3. Also shown in this figure is the 
trained DGCN model as a function of the two most 
important input parameters and the output variable to be 

mapped. The transparent areas represent the 95% confi-
dence interval of the model. Such plots can also provide 
a deeper understanding of the interdependencies of the 
parameters.

Discussion
The study described in this protocol will aim to use pro-
spective injury data collection over a complete season 
period to (a) assess running injuries and their character-
istics, (b) identify and analyze internal and external risk 

Fig. 2  Schematic overview of the DGCN model

Fig. 3  Example for sensitivity analysis
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factors as well as identify their interaction, and (c) deter-
mine and predict the relationships between internal and 
external risk factors and running-related injuries using 
machine learning processes in running athletes.

Considering different running distances and levels, 
a recent systematic review from 18 prospective studies 
showed an overall incidence of 40.2% ± 18.8% for running-
related musculoskeletal injuries [1]. In over 70% of the 
running-related injuries, overuse injuries are located at the 
knee, ankle, lower leg, foot, and toe [1, 55]. For instance, the 
occurrence of a skeletal overuse injury is related to load-
ing patterns that lead to microdamage and tissue fatigue, 
and finally to a bone stress injury [56, 57]. The mechanical 
overloading can develop during multiple sessions (gradual 
onset) or in a single session (sudden onset) and is depend-
ent upon the structure-specific load capacity [15]. As a 
result of an imbalance of the mechanical load and the 
structure-specific load capacity, pathologies such as patel-
lofemoral pain syndrome, plantar fasciopathy, iliotibial 
band syndrome, bone stress injury, or Achilles tendinopa-
thy can occur [1, 55]. To prevent such pathologies a detailed 
analysis of the risk factors is necessary. Among others, sig-
nificant risk factors in running are: previous injuries, higher 
body mass index, low vitamin D status, impaired bone 
health [16, 17], higher age, sex, no previous running experi-
ence, lower running volume and biomechanical factors [8, 
9, 43]. All of these risk factors are in some way attributable 
to a mismatch of loading and loading capacity.

Thus, an essential component in the analysis of risk 
factors is the monitoring of internal and external load 
parameters. In the study presented in this protocol, we 
will use several standardized methods to monitor the 
individual internal and external load of each athlete 
both at baseline and during the study period. One pos-
sible way to identify load-dependent consequences at an 
early stage and to identify further risk factors in running 
athletes is the monitoring of biomechanical running pat-
terns. Previous systematic reviews indicate that there is 
some evidence for increased risk due to a greater peak 
hip adduction [8, 58, 59] and a reduced peak rearfoot 
eversion in female runners [58]. In a retrospective case–
control study, strike patterns and peak vertical ground 
reaction force were characterized as biomechanical 
characteristics for some injuries [21]. However, the cur-
rent literature highlights the need for further research to 
identify biomechanical factors and their interaction as 
risk factors in running. Accordingly, one important focus 
of the present study will be to collect individual biome-
chanical running parameters by IMUs during every train-
ing and competition session and to determine possible 
changes. These changes can be the result of different 
initial risk factors such as pre-injury, pain, sex, bone sub-
stance, load, environment, the footwear.

Besides biomechanics and cumulative loading param-
eters, the identification of intrinsic biological risk factors 
is of major importance. It is well-known that athletes with 
a reduced tissue-specific loading capacity or inadequate 
homeostatic regulation following tissue damage are prone 
to overuse injuries [60–62]. A variety of risk factors such as 
energy availability, specific nutritional deficits and impaired 
musculoskeletal tissue quality have been identified for over-
use injuries to bone (bone stress injury), tendon (tendinopa-
thy) and muscle (muscle injury), thus further demonstrating 
the need for a multifactorial approach [6, 60, 61, 63].

To address the multifactorial causation at an interin-
dividual level of risk factors, this study will perform an 
ML analysis including the discriminative mediators. 
The advantage of using ML processing is that the model 
is able to learn from the input data which means, usu-
ally ML results in a training phase and a test phase [24]. 
Feeding ML models with human biomechanical data, 
especially from IMUs, is already a common practice in 
activity recognition [64–66], however, the goal in the 
present study is to input both kinematic and descrip-
tive data to the ML model and to generate injuries as 
output data to predict the injury risk. Van Eetvelde and 
colleagues (2021) recently published a systematic review 
about ML methods to predict and prevent injuries in 
team sports [23]. The most frequent ML methods used 
in the included studies were tree-based ensemble meth-
ods, Support Vector Machines, and Artificial Neural 
Networks, resulting in an injury prediction from poor 
(Accuracy = 52%, AUC = 0.52) to strong (AUC = 0.87, 
f1-score = 85%) [23]. Based on this systematic review, it 
can be concluded that the use of ML models for the pre-
diction of risk factors seems to be appropriate.

To the best of our knowledge, no study investigated 
prospectively the influence of biomechanical, skeletal, 
and loading risk factors on running-related injuries via 
machine learning algorithms in running athletes. The 
results of the planned study may deliver a substantial 
impact on the early detection of risk factors for running-
related injuries. Thus, runners could react to increased 
risk during training routine by wearing the IMU and 
using the ML system and actively contribute to minimiz-
ing the incidence of injuries in running. Future studies 
should focus on the system-implemented recommenda-
tions in case of an identified increased risk of injury.
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