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Abstract 

Background:  Recent advancements in wearable technology have enabled easy measurement of daily activities, 
potentially applicable in rehabilitation practice for various purposes such as maintaining and increasing patients’ activ-
ity levels. In this study, we aimed to examine the validity of trunk acceleration measurement using a chest monitor 
embedded in a smart clothing system (‘hitoe’ system), an emerging wearable system, in assessing the physical activity 
in an experimental setting with healthy subjects (Study 1) and in a clinical setting with post-stroke patients (Study 2).

Methods:  Study 1 involved the participation of 14 healthy individuals. The trunk acceleration, heart rate (HR), and 
oxygen consumption were simultaneously measured during treadmill testing with a Bruce protocol. Trunk accelera-
tion and HR were measured using the "hitoe" system, a smart clothing system with embedded chest sensors. Expira-
tory gas analysis was performed to measure oxygen consumption. Three parameters, moving average (MA), moving 
standard deviation (MSD), and moving root mean square (RMS), were calculated from the norm of the trunk accelera-
tion. The relationships between these accelerometer-based parameters and oxygen consumption-based physical 
activity intensity measured with the percent VO2 reserve (%VO2R) were examined. In Study 2, 48 h of simultaneous 
measurement of trunk acceleration and heart rate-based physical activity intensity in terms of percent heart rate 
reserve (%HRR) was conducted with the "hitoe" system in 136 post-stroke patients.

Results:  The values of MA, MSD, RMS, and %VO2R were significantly different between levels 1, 2, 3, and 4 in the 
Bruce protocol (P < 0.01). The average coefficients of determination for individual regression for %VO2R versus MA, 
%VO2R versus MSD, and %VO2R versus RMS were 0.89 ± 0.05, 0.96 ± 0.03, and 0.91 ± 0.05, respectively. Among the 
parameters examined, MSD showed the best correlation with %VO2R, indicating high validity of the parameter for 
assessing physical activity intensity. The 48-h measurement of MSD and %HRR in post-stroke patients showed signifi-
cant within-individual correlation (P < 0.05) in 131 out of 136 patients (correlation coefficient: 0.60 ± 0.16).

Conclusions:  The results support the validity of the MSD calculated from the trunk acceleration measured with a 
smart clothing system in assessing the physical activity intensity.

Trial registration: UMIN000034967. Registered 21 November 2018 (retrospectively registered).
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Background
Recently, there have been several reports on activ-
ity monitoring using wearable devices, along with the 
dynamic development in measurement technology. 
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Accelerometry is one of the main measurement modali-
ties used for monitoring physical activity. A number of 
studies have reported its usefulness in monitoring the 
movements of individuals using devices, such as pedom-
eters, which are worn on the waist and used for measur-
ing step counts [1, 2] and wrist-worn type accelerometers 
[3, 4], which are increasingly becoming common these 
days.

Given the increasing need for rehabilitation clinical 
practices to quantify daily activities of patients for the 
purpose of maintaining and increasing their activity lev-
els, the use of an accelerometer would be beneficial in 
the assessment of the activity quantification of patients 
in rehabilitation. However, there may still be some diffi-
culties in applying these devices to patients with motor 
impairments such as post-stroke paresis, which is fre-
quently observed in the rehabilitation practice. For exam-
ple, patients with paresis or lower limb injuries frequently 
use handrails or canes, which may interfere with accurate 
measurements using a wrist-worn accelerometer [5]. 
Measuring steps with an accelerometer can be inaccurate 
for patients with neurological disorders [6] due to rea-
sons such as irregular step patterns and low gait speeds.

Therefore, an alternative methodology optimized for 
activity quantification is required for patients with motor 
impairment.

Trunk acceleration measurement may be an option. 
The measurement of trunk movement should be less 
influenced by the upper and lower limb motions of 
patients with motor impairment and thus can be effec-
tive in quantifying the physical activity of the patients. 
The measurement of trunk acceleration has been used 
in activity monitoring in various manners. For example, 
there are several studies that evaluated gait parameters 
such as steps and asymmetry with trunk acceleration 
[7–9]. The chest-mounted accelerometer is also used 
for activity recognition [10, 11] and fall detection [12]. 
However, the usability of trunk acceleration with a chest-
worn monitor for the quantification of activity is not well 
investigated.

In addition, a new index for the quantification of the 
physical activity using accelerometer may be needed; to 
date, the use of indices such as step counts and device-
specific activity counts which are discrete variables that 
describe count of movement above a certain pre-set 
threshold of intensity has been common [13, 14]. How-
ever, previous studies have shown that the step and 
device-specific activity counts may underestimate activ-
ity in patients with motor impairment, especially in those 
with slow walking velocity [6, 15–18], possibly because 
the devices are developed for general use and the algo-
rithms for step detection may be optimized for healthy 
subjects, and therefore the slow and small movement of 

patients with motor impairment [19, 20] may be hard 
to detect with the pre-set threshold. Therefore, the use 
of continuous variables that are without thresholds and 
describe the intensity of movement may be more appro-
priate to describe the amount of activity of patients with 
motor impairment whose daily life activity is slower and 
smaller in intensity compared with healthy individuals.

Therefore, in this study, we aimed to investigate a 
continuous variable based on trunk acceleration that 
is suitable to describe intensity of physical activity. For 
this purpose, we conducted two-step experiments; first, 
we investigated the validity of several indices based on 
trunk acceleration measurements for the assessment of 
the intensity of physical activity, in comparison with the 
exercise intensity determined via expiratory gas analysis 
and heart rate measurement. Second, we conducted 48-h 
simultaneous measurements of acceleration and heart 
rate in post-stroke inpatients, to investigate the feasibil-
ity and validity of measurements in rehabilitation clinical 
practice. A smart clothing system (‘hitoe’ system), which 
is a wearable monitoring system embedded with chest-
worn accelerometer and heart rate monitor, was used for 
measurement.

Materials and methods
Participants
Study 1
Fourteen healthy adults (10 males; mean age of 
29 ± 5  years) with no medical history of neurological, 
musculoskeletal, cardiovascular, or respiratory diseases 
participated in this study (Table  1). Individuals who 

Table 1  Participants’ characteristics

Variables Study 1 
(Healthy 
individuals)

Study 2 
(Stroke 
patients)

Age, years 29 ± 5 66 ± 15

Height, cm 166.3 ± 9.0 160.7 ± 16.9

Weight, kg 58.7 ± 11.0 58.7 ± 14.2

Sex, male/female 10/4 87/49

Diagnosis, intracerebral hemorrhage/cer-
ebral infarct/subarachnoid hemorrhage

59/64/13

Time after stroke, days 31 (4–95)

SIAS motor score (0–25) 14.6 ± 8.6

 Severe (0–10)/moderate (11–20)/mild 
(21–25)

43/65/28

 FIM total score 74.7 ± 33.9

 FIM motor score 51.1 ± 25.7

 FIM cognitive score 24.0/10.1
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received medication that could potentially affect perfor-
mance were excluded.

Study 2
Participants were recruited from the acute- or subacute 
post-stroke patients who underwent inpatient rehabilita-
tion at Fujita Health University Hospital, Convalescent 
Rehabilitation Ward, between January 2018 and February 
2021. The inclusion criteria were: (1) patients diagnosed 
with cerebral hemorrhage, cerebral infarct, or subarach-
noid hemorrhage, (2) patients admitted in rehabilitation 
ward within120 days after onset. The exclusion criteria 
were: (1) presence of orthopedic disease and/or severe 
cardiopulmonary disease that limits daily living activ-
ity, (2) beta-blocker usage, (3) presence of arrhythmia 
including atrial fibrillation, and (4) unstable medical 
condition (e.g., deep vein thrombosis, aspiration pneu-
monia, or superimposed sepsis). A total of 136 patients 
were included. Demographic variables of the patients are 
shown in Table 1.

Each subject’s functional motor level was quantified 
using motor score of Stroke Impairment Assessment Set 
(SIAS), which scores motor function from 0 to 25 [21]. 
According to the SIAS, the patients were divided into 
three groups; severe (SIAS 0–10), moderate (11–20), 
and mild (21–25). The levels activities of daily living of 
the patients were shown with Functional Independence 
Measure (FIM) [22].

This study was complied using the principles of the 
Declaration of Helsinki and was approved by the Medi-
cal Ethics Committee of Fujita Health University. All the 
participants provided written informed consent prior to 
participation.

Procedures
Study 1: Measurement
Each participant underwent treadmill testing following 
Bruce protocol [23]. Respiratory gas analysis during exer-
cise testing was performed using a mobile aerosol moni-
tor (AE-100i, Minato Medical Science, Tokyo, Japan) to 
measure oxygen consumption (VO2). The participants 
wore a face mask to sample exhaled air and the VO2 was 
continuously measured using breath-by-breath method. 
The monitor was calibrated before and after each testing 
session using verified calibration gases.

Participants were asked to avoid any high-intensity 
exercise and alcohol or caffeine consumption 24 h prior to 
the assessment. Before these tests, the resting VO2 while 
sitting was measured. According to the Bruce protocol, 

participants started exercising at level 1 with a tread-
mill speed of 2.7  km/h  and an incline of 10% gradient 
for 3 min. The speed and inclination were subsequently 
increased at 3-min periods in the following manner: 
level 2, 12% incline at 4.0  km/h; level 3, 14% incline at 
5.5  km/h; level 4, 16% incline at 6.8  km/h; level 5, 18% 
incline at 8.1 km/h; level 6, 20% incline at 8.9 km/h; and 
level 7, 22% incline at 9.7  km/h. We considered VO2 to 
have reached the maximum value if the participants sat-
isfied at least three of the following four criteria: (1) max-
imum voluntary exhaustion, as measured by the Borg 
CR-10 scale; (2) presence of a heart rate plateau (ΔHR 
between two consecutive work rates ≤ 4 beats·min−1); (3) 
presence of a VO2 plateau (ΔVO2 between two consecu-
tive work rates < 2.1  mL·kg−1⋅min−1); and (4) maximal 
respiratory exchange ratio ((RERmax) > 1.1) [24, 25].

Trunk acceleration and heart rate (HR) was measured 
using a ‘hitoe’ smart clothing system (Fig. 1; NTT Corp., 
Tokyo, Japan and Toray Industries Inc., Tokyo, Japan) 
[26]. This smart clothing system comprised a ‘hitoe’ wear, 
‘hitoe’ transmitter, and smartphone application. An accel-
erometer embedded in the ‘hitoe’ transmitter placed on 
the chest measured the trunk acceleration. The HR was 
measured with the chest electrode embedded in the 
‘hitoe’ wear. The accuracy of heart rate measurement of 
this system has been previously reported [27]. The sam-
pling rate was 25 Hz. The transmitter sent the data to a 
smartphone using Bluetooth Low Energy (BLE). The 
smartphone application was created by authors using the 
‘hitoe’ SDK kit (NTT DOCOMO Inc., Tokyo).

Study 1: Parameters
The intensity of the activity was assessed by the percent 
VO2 reserve (%VO2R), a gold standard for the assessment 
of exercise intensity [28].

%VO2R was calculated using the following equation:

The VO2 value during sitting and the maximum VO2 
value during treadmill exercise testing using the Bruce 
protocol were used for measuring resting and maximum 
VO2, respectively.

In addition, percent HR reserve (%HRR) was calcu-
lated from HR measured. %HRR is also used as an index 
of exercise intensity [29] that strongly correlates with 
%VO2R and is considered equivalent to %VO2R [30, 31].

%HRR was calculated as follows:
%HRR =

(

HR− resting HR
)

/
(

maximumHRduring

treadmill testing − resting HR
})

.

%VO2R =

(

VO2 − resting VO2

)

/
(

MaximumVO2 during treadmill testing − resting VO2

)

.
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Several movement quantification indices based on 
trunk acceleration were compared with %VO2R in this 
study. The moving mean, moving standard deviation, and 
moving root mean square over a window of 50 samples 
(2 s) of the trunk acceleration were calculated using data 
for the last 2 s (50 data points). The norm of acceleration 
was calculated using the following equation:
Norm =

√

(x2 + y2 + z2),
where x, y, and z represent the vertical, lateral, and 

anterior/posterior axes, respectively.

%VO2R and acceleration-based indices used for the 
analyses were averaged during the middle 1 min of each 
3-min stage during the treadmill testing.

Study 2: Measurement and Parameters
A 48-h measurement session was conducted using the 
‘hitoe’ smart clothing system for post-stroke inpatients 
in the convalescent rehabilitation ward. The patients 
wore a ‘hitoe’ wear for 48 h consecutively, starting from 
the morning of the first measurement day. The heart rate 
and trunk acceleration were measured using a chest-
worn accelerometer and a heart rate monitor embedded 

Fig. 1  The ‘hitoe’ transmitter, the ‘hitoe’ wear, and the smartphone application. The ’hitoe’ transmitter (A) is placed on the chest of the ’hitoe’ wear (B). 
The data sent to the smartphone via Bluetooth can be seen on the smartphone application (C)
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in ‘hitoe’ wear. The %HRR and MSD of the acceleration 
value were calculated as Study 1. The time course of the 
values averaged for every 30 min were used for analysis.

Analyses
Study 1
The normality assumption was checked using the Shap-
iro–Wilk test. Pearson’s or Spearman’s correlations were 
used to assess the simple relationship between %VO2R, 
%HRR and acceleration-based indices. To investigate 
whether the acceleration-based indices differentiate 
the different levels of physical activity defined in the 
Bruce protocol, the values of MA, MSD, and RMS, and 
%VO2R as a reference, at levels 1 to 4 in the Bruce pro-
tocol were compared. The one-way repeated measures 
analysis of variance (ANOVA) or Friedman test was 
used for comparison between the levels, and when sig-
nificant, post-hoc multiple comparisons were performed 
using Tukey’s HSD test (parametric) or Steel–Dwass test 
(non-parametric).

To investigate within-subject relationships between the 
acceleration-based indices and %VO2R and its variability, 
three linear regressions were performed for each subject: 
values of %VO2R versus MA, %VO2R versus MSD, and 
%VO2R versus RMS. Mean values and standard devia-
tions (SD) for intercepts, slopes, and coefficients of deter-
mination were calculated for each regression.

Sample size was calculated on the basis of the previ-
ously shown correlation between the acceleration-based 
indices (RMS and device-specific parameters) and VO2 
measurements [32, 33], using software G*Power, version 
3.1.9.2 [34]. Minimum required sample size was calcu-
lated as eight (1-β 0.95, α 0.05). To minimize the effect of 
data loss, we recruited 14 participants for this study.

Study 2
The normality assumption was checked using the Shap-
iro–Wilk test. Pearson’s or Spearman’s correlations were 
used to assess the bivariate relationships between %HRR 
and MSD. To investigate within-subject relationships 
between the %HRR and MSD, linear regressions were 
performed for each subject. Mean value and standard 
deviation (SD) for intercepts and slopes were calculated. 
The one-way ANOVA (parametric) or Kruskal–Wallis 
test (non-parametric) was used for comparison of regres-
sion slopes among mild, moderate, and severe paresis 
groups, and when significant, post-hoc multiple compari-
sons were performed using Tukey’s HSD test (paramet-
ric) or Steel–Dwass test (non-parametric).

Statistical analyses of experiment 1 and 2 were per-
formed using JMP11 software (SAS Institute Inc., Cary, 
NC, USA). The significance level was set at 5%.

This study has been registered with the number of 
UMIN000034967, on 21/11/2018.

Results
Study 1
First, the simple relationship with the Pearson correlation 
between VO2, HR, and acceleration-based indices were 
assessed. Significant correlations were observed among 
%VO2R and %HRR, %VO2R and MA, %VO2R and MSD, 
and %VO2R and RMS (r = 0.97 and P < 0.01, r = 0.87 
and P < 0.01, r = 0.96 and P < 0.01, r = 0.92 and P < 0.01, 
respectively). The scatter plots are shown in Fig. 2.

To evaluate the strength and the variety of within-indi-
vidual relationship between the acceleration-based indi-
ces and VO2R, the mean, SDs and CVs for the intercepts 
and slopes from the individual linear regression mod-
els and their coefficients of determinant were evaluated 
(Table 2). The averaged coefficients of determination for 
%VO2R versus MA, %VO2R versus MSD, and %VO2R 
versus RMS were 0.89 ± 0.05, 0.96 ± 0.03, 0.91 ± 0.05, 
respectively.

Then, the discriminative capacity of the acceleration-
based indices in detecting different levels of exercise 
task were tested comparing the data of levels 1, 2, 3, 
and 4 in Bruce protocol. The values of MA, MSD, RMS, 
and %VO2R at levels 1 to 4 in the Bruce protocol are 
shown in Fig. 3. The values at level 1–4 were 0.98 ± 0.02, 
0.99 ± 0.02, 1.00 ± 0.02, and 1.06 ± 0.04 for MA; 
0.13 ± 0.02, 0.23 ± 0.03, 0.34 ± 0.03, and 0.70 ± 0.22 for 
MSD; 0.99 ± 0.02, 1.01 ± 0.02, 1.06 ± 0.02, and 1.28 ± 0.15 
for RMS; and 32.6 ± 4.9%, 47.0 ± 6.2%, 61 ± 7.9%, and 
86.5 ± 11.6% for VO2R, respectively. Significant differ-
ences between levels 1 and 2, levels 2 and 3, and levels 3 
and 4 can be observed in all indices (P < 0.01).

The correlation between %VO2R and acceleration-
based indices and %HRR within each level is shown in 
Table  3. Significant correlations between %VO2R and 
MA, MSD, and RMS were found at level 4, while corre-
lations between %VO2R and %HRR were significant at 
levels 1, 2, and 4. Scatter plots of %VO2R and MA, MSD, 
RMS, and %HRR at levels 1 to 4 are shown in Additional 
file 1: Fig. S1.

Study 2
A comparison between %HRR, which was previously 
reported to be equivalent with the %VO2R [30], and 
MSD, which was best correlated with VO2R in the exper-
imental setting, was conducted in real-life setting (48 
consecutive hours) of the post-stroke patients. The cor-
relation coefficient between the average of the %HRR and 
MSD was r = 0.29 (P < 0.01, Fig. 4).
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The correlation between MSD and %HRR within each 
participant was also investigated. Significant correlation 
was observed in 131 out of 136 patients (96.3%). The 
average of correlation coefficient was 0.60 ± 0.16.

To investigate the variety of within-individual relation-
ship between the MSD and %HRR, the mean and SDs 
for the intercepts and slopes from the individual lin-
ear regression models were evaluated. The slopes were 
1.75 ± 1.31 and the intercepts were 0.01 ± 0.04. The 
values of slope in mild, moderate, and severe paresis 

groups are presented in Fig.  5. Significant differences 
among patients with severe, moderate, and mild paresis 
were observed ( 2.36 ± 1.30, 1.68 ± 1.38 and 0.99 ± 0.56, 
respectively).

Discussion
In this study, the acceleration-based measurement of 
physical activity was validated in two steps. First, the 
relationship between %VO2R, %HRR, and the acceler-
ation-based movement indices, MA, MSD, and RMS—
calculated from the measurement of trunk acceleration 
using a smart clothing system—was examined. Overall, 
the acceleration-based indices were significantly corre-
lated with %VO2R, as well as %HRR. The results of the 
regression analysis of each subject showed that MA, 
MSD, and RMS all fit the linear regressions, with MSD 
showing the best fit with the individual linear regres-
sions. Using these acceleration indices, the different lev-
els of exercise intensity defined in the Bruce protocol 
were clearly identified. Second, 48-h of activity meas-
urements using MSD and %HRR was conducted in 136 

Fig. 2  Scatter plot of %VO2R versus %HRR, %VO2R versus MA, %VO2R versus MSD, and %VO2R versus RMS. The scatter plots of acceleration indices: 
%VO2R versus %HRR (A: r = 0.97, P < 0.01), %VO2R versus MA (B: r = 0.87, P < 0.01), %VO2R versus MSD (C: r = 0.96, P < 0.01), and %VO2R versus RMS (D: 
r = 0.92, P < 0.01)

Table 2  Intercepts, slopes, and coefficients of determinants 
from the individual linear regression models

MA, moving average of acceleration; MSD, moving standard deviation of 
acceleration; RMS, root mean square of acceleration; SD, standard deviation; CV, 
coefficient of variation

MA MSD RMS

y intercept − 4.98 ± 2.27 0.27 ± 0.07 − 1.00 ± 0.34

Slope 5.47 ± 2.20 0.86 ± 0.13 1.44 ± 0.29

R2 0.90 ± 0.05 0.96 ± 0.03 0.91 ± 0.05
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post-stroke patients. Although the group analysis only 
shows weak correlation between averaged daily MSD 
and %HRR, significant correlation between the values 
of MSD and %HRR within individual measurements 
were observed in 96.3% of the patients. The slopes of the 

Fig. 3  The acceleration indices and VO2R values in each level of Bruce protocol. The values of MA (A), MSD (B), RMS (C), and %VO2R (D) at levels 1 to 
4 are shown. *P < 0.01

Table 3  Correlation coefficient between %VO2R versus %HRR 
and acceleration indices

*P < 0.05, **P < 0.01

%VO2R vs Level 1 Level 2 Level 3 Level 4

%HRR 0.54* 0.56* 0.49 0.62*

MA 0.18 0.01 0.23 0.56*

MSD 0.43 0.33 0.50 0.78**

RMS 0.34 0.27 0.27 0.76**

Fig. 4  The scatter plot of averages of MSD and %HRR (r = 0.29, 
P < 0.01)
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individual regression were significantly different between 
different levels of paresis.

The overall correlation between the trunk accelera-
tion with waist-worn accelerometer and the oxygen 
consumption has been shown previously [32, 33]. The 
results of this study showed that this correlation is also 
seen between the values measured by chest-worn accel-
erometer and the exercise intensity estimated from the 
oxygen consumption that is frequently used in the exer-
cise prescription in the rehabilitation practice [35]. In 
addition, we tested several indices of acceleration, such 
as MA and MSD—which are basic indices that represent 
the amplitude and fluctuation of values—and the RMS—
which has been used in previous studies that quantified 
running using an accelerometer [32, 36]. Among these 
indices, MSD exhibited the strongest correlation with 
VO2R, and the least variability between the subjects. This 
may be related to the inclusion of gravitational accelera-
tion. The absolute measurement value of accelerometer 
includes error from the gravity acceleration, which is dif-
ficult to separate from the dynamic component of accel-
eration [37, 38]. Considering that the measurement of 
acceleration is affected by environmental conditions such 
as temperature [39] and that the necessity of frequent 
calibration would complicate measurement, measure-
ment values that do not include gravitational accelera-
tion could represent a better alternative. While MA and 
RMS are indices that include gravitational acceleration, 
MSD is an index of fluctuations from the moving aver-
age, which focuses more on the dynamic component of 
values. Although there may be more sophisticated meth-
odology such as the use of autocalibration methodology 
to eliminate the gravitational acceleration [40], the simple 
solution to calculate moving standard deviation without 

complex data analysis can be easily applied regardless of 
the measurement devices.

The correlation between the VO2R representing rela-
tive increase in oxygen consumption and the trunk accel-
eration is logically derived from the intensity of physical 
motion of the trunk. In fact, the trunk is the heaviest 
body segment [41, 42]; thus, its movement can largely 
affect oxygen consumption. Therefore, trunk movement 
can possibly provide more accurate measurements on 
exercise intensity than upper-limb movement, which var-
ies extensively in patients with motor impairment [43]. 
Although the measurement of trunk movement with a 
chest-mounted accelerometer may not be as easy as with 
wrist-worn accelerometers, the use of a smart clothing 
system can make it more feasible [44, 45].

The acceleration indices also identified different levels 
of exercise tasks, defined by the speed and inclination 
in the Bruce protocol. This level identification is reason-
able considering that the large stride related to the high 
treadmill walking speed and inclination requires a large 
movement of the human body [46], with the cadence 
and frequency of the steps also increasing to adjust to 
the high treadmill speed [47]. Among the indices, MSD 
showed the least overlap in values between the levels 1, 2, 
3, and 4, indicating the best accuracy of all in describing 
the physical intensity of the activity. The low within-level 
correlation between %VO2R and acceleration indices in 
levels 1, 2, and 3 should indicate that acceleration meas-
urement of the trunk reflects the task itself, irrespective 
of individual fitness while walking; the speed and incli-
nation determine the acceleration values. In contrast, a 
high within-level correlation between %VO2R and accel-
eration indices was observed in level 4, in which trunk 
movement can be more dynamic. These differences 
should be related to the difference between the acceler-
ation-based indices and the %VO2R and %HRR; physical 
activity intensity as measured by accelerometers reflects 
the actual physical movements [48], while %HRR and 
%VO2R are based on blood and supplied oxygen [30]. 
The simultaneous measurement of these two aspects of 
physical activity may provide a deeper understanding of 
the activity.

In the second study, we investigated how these meas-
urements appear in patients with motor impairments. 
The relationship between the MSD and %HRR, reflect-
ing actual movement and blood provision-based physi-
cal intensity, in post-stroke patients was examined. The 
MSD and %HRR were significantly correlated in 96.3% of 
the patients, including those with severe paresis. These 
results indicate that MSD, a continuous variable without 
pre-set threshold, can be used to measure physical activ-
ity in patients with various levels of motor impairment. 
In addition, the results showed large variability in the 

Fig. 5  Regression slope (x = MSD, y = %HRR) and levels of paresis. 
Severe, moderate, and mild groups include patients with SIAS 0–10, 
11–20, and 21–25, respectively. * < 0.05, ** < 0.01
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relationship between the MSD and %HRR, with the slope 
of the regression related to the severity of the paresis. 
This variability in regression slope may reflect the varied 
level of efficiency of the physical activity in the patients. 
McGregor et  al. reported that the relationship between 
acceleration measurements and oxygen consumption can 
vary with exercise experience [32]. Accordingly, it is rea-
sonable that the relationship between supply and output 
varies extensively in people with motor impairment. For 
example, a patient with severe paresis may need more 
blood supply, resulting in an increase in %HRR, while 
performing less physical movement corresponded to the 
MSD when compared with a patient with mild paresis 
(Fig. 6). Evaluating this relationship will expand the pos-
sibilities of activity measurement, useful for evaluating 
the amount of activity and the movement efficiency for 
each patient.

Limitations
In this study, the acceleration indices based on trunk 
acceleration measurement were compared with %VO2R 
using Bruce protocol only in healthy subjects, although 
this study aimed to develop a trunk acceleration-based 
indices that can be used for physical activity intensity 
measurement including patients with motor impairment. 
Actually, the exercise loading at maximal oxygen con-
sumption is impossible in the patients due to the motor 
impairment and the same experimental setting can-
not be applied. Therefore, in study 2, we tested this with 
more simplified methodology but with larger samples in 
clinical setting; the 48-h simultaneous measurement of 
acceleration and HR was conducted in 136 post-stroke 
inpatients. The physical activity intensity was measured 
with %HRR calculated from HR and strongly correlates 
with %VO2R. The simultaneous measurement of accel-
eration and %HRR showed significant within-individual 

correlations between MSD and %HRR. Although the 
%HRR measurement does not directly quantify oxygen 
consumption, the large sample size may support the cer-
tainty of the results. In addition, the second study con-
ducted with the clinical population would support the 
feasibility of this methodology in clinical measurement of 
physical activity intensity.

Conclusions
In this study, we evaluated the acceleration-based 
measurement of physical activity using a chest-
worn accelerometer in two steps. The first study with 
healthy individuals revealed a high correlation between 
the trunk acceleration indices, especially MSD, and 
%VO2R, thus supporting the usability of trunk accel-
eration measurement using a chest-worn accelerometer 
for assessing the physical activity intensity. The sec-
ond study involving post-stroke rehabilitation patients 
demonstrated the possible advantage of this method in 
activity monitoring that enables simultaneous meas-
urement of actual activity and blood supply to show 
activity efficiency. Further exploration of these method-
ologies may provide a meaningful and clinically viable 
model for using activity monitoring in rehabilitation 
settings.
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