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Abstract 

Background:  To evaluate the effects of 8 weeks of Aerobic Physical Training (AET) on the mitochondrial biogenesis 
and oxidative balance in the Prefrontal Cortex (PFC) of leptin deficiency-induced obese mice (ob/ob mice).

Methods:  Then, the mice were submitted to an 8-week protocol of aerobic physical training (AET) at moderate 
intensity (60% of the maximum running speed). In the oxidative stress, we analyzed Malonaldehyde (MDA) and 
Carbonyls, the enzymatic activity of Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione S Transferase (GST), 
non-enzymatic antioxidant system: reduced glutathione (GSH), and Total thiols. Additionally, we evaluated the gene 
expression of PGC-1α SIRT-1, and ATP5A related to mitochondrial biogenesis and function.

Results:  In our study, we did not observe a significant difference in MDA (p = 0.2855), Carbonyl’s (p = 0.2246), SOD 
(p = 0.1595), and CAT (p = 0.6882) activity. However, the activity of GST (p = 0.04), the levels of GSH (p = 0.001), and 
Thiols (p = 0.02) were increased after 8 weeks of AET. Additionally, there were high levels of PGC-1α (p = 0.01), SIRT-1 
(p = 0.009), and ATP5A (p = 0.01) gene expression after AET in comparison with the sedentary group.

Conclusions:  AET for eight weeks can improve antioxidant defense and increase the expression of PGC-1α, SIRT-1, 
and ATP5A in PFC of ob/ob mice.
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Background
Obesity is a chronic metabolic disease that affects more 
than a billion people worldwide [1]. Characterized by 
individuals with body mass index (BMI) higher than 

30  kg/m2, obesity has been listed as a risk factor for 
several chronic degenerative diseases [2]. Studies have 
demonstrated a variety of factors associated with the 
establishment of obesity, such as genetic, hormonal, and 
behavioral [3–5], wherein it has been described their 
relationship with areas of the Central Nervous System 
(CNS) that regulate energy balance and food intake [6, 7].

Moreover, it has been demonstrated that obesity might 
disturb cognitive centers by impairing neural networks in 
the Prefrontal Cortex (PFC) [8]. The PFC is responsible 
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for high executive functions such as attention, motor 
planning, and working memory, as well as the regulation 
of the limbic reward [9]. Due to the interaction between 
the limbic system and emotional regulation, PFC signifi-
cantly influences food intake’s behavioral control. Previ-
ous studies in the literature suggest that unhealthy eating 
behaviors result in poor executive functioning of the 
PFC, resulting in compromised self-control [10]. Since 
dorsolateral PFC plays a role in the supervision of eat-
ing and making healthy eating decisions, additional stud-
ies show that obese individuals have less left dorsolateral 
PFC activation after a meal compared with lean individu-
als, indicating dysfunction in the inhibitory mechanisms 
responsible for the control of the eating behavior and 
food choice [11]. In this context, obesity affects executive 
functions assessed through Delay Discounting, Penn Pro-
gressive Matrices, Picture Vocabulary, and Dimensional 
Change Card Sort Tests [12–15].

Contrariwise, Aerobic Physical Training (AET) [16–18] 
has been widely used in the prevention and treatment 
of obesity as well as in the enhancement of brain func-
tion, like neuromuscular rehabilitation protocol [19]. 
As a metabolic enhancer, exercise can improve lipolysis, 
immunity, oxidative metabolism, neuroplasticity, as well 
as mitochondria function, and oxidative stress resilience 
[20].

Oxidative stress is the process that can be defined as 
an imbalance between the production of the Reactive 
Oxygen Species (ROS) and their elimination [21, 22]. 
According to data in literature, several neurodegenera-
tive diseases (e.g., Alzheimer, Parkinson, Huntington, 
and Multiple sclerosis) are associated with higher levels 
of ROS and the establishment of oxidative stress [21, 23, 
24]. In the same way, recent data in the literature sug-
gest the important role of ROS and oxidative stress in the 
brain dysfunctions associated with obesity [25, 26].

Despite the data in the literature demonstrating that 
exercise can reduce the deleterious effects induced by 
obesity on the brain, interestingly, up to now, there is 
a gap in the literature evaluating the specific effect of 
moderate aerobic exercise in a specific area of the brain, 
responsible for taking of decisions, and control of execu-
tive’s patterns linking oxidative stress and mitochondrial 
biogenesis. Therefore, the present study aims to evalu-
ate in PFC from ob/ob mice the levels of oxidative stress 
and the gene expression of mitochondrial biogenesis (i.e., 
PGC1α, SIRT-1, and ATP5A).

Methods
Ob Ob mice model
Male mice ob/ob (C57BL6) deficient in leptin aging 
8  weeks old (LIM-07) were randomly divided into two 
groups: sedentary (SED, n = 6) and trained (TF, n = 6). 

The mice were kept in standard animal facility condi-
tions. The mice were housed in a temperature-controlled 
environment (22 ± 2 °C) with a 12-h light/12-h dark cycle 
and free access to tap water and food (Nuvilab—Nuvital 
Nutrientes S/A, Brazil).

Physical training
Trained mice were submitted to AET as previously 
described by Ferreira et al. [27]. Before starting the train-
ing, we conducted the capacity test where we placed the 
mice on the treadmill, applied the speed of 0.4 km/h, and 
increased the speed by 0.2  km/h every 3  min until the 
mice got to exhaustion, which characterizes the maximal 
running capacity. After four weeks, we re-evaluated each 
mouse, and the speed for the next week was corrected. 
The protocol training was conducted 5 × per week, at 
60% of their max capacity, without inclination, for 60 min 
during eight weeks. Sedentary mice were placed on the 
treadmill but with the treadmill off. Forty-eight hours 
after the last session of the training protocol, we collected 
the skeletal muscle. We evaluated the citrate synthase 
activity to certify whether the moderate training-induced 
metabolic modulation.

Euthanasia
Forty-eight hours after the last training session, the mice 
were anesthetized with a dose of intraperitoneal keta-
mine hydrochloride (0.5  mL/kg), and samples were col-
lected by exsanguination [28].

Citrate synthase activity
Citrate synthase activity was performed as described 
by Le Page [29]. Briefly, the mixture containing TrisHCl 
(pH = 8.2), magnesium chloride (MgCl), ethylene-
diaminetetra-acetic acid (EDTA), 0.2–5.5 dithiobis 
(2-nitrobenzoic acid) (E = 13.6  mmol/(ml  cm), 3 acetyl 
CoA, 5 oxaloacetate and 0.3 mg/ml of sample. The enzy-
matic activity was evaluated at 412  nm for 2  min at a 
temperature of 25 °C. The data was expressed as U/mg of 
protein.

Lipid peroxidation assay
Lipid peroxidation was also evaluated through the sub-
stances reactive to Thiobarbituric Acid (TBARS), as 
described by Buege and Aust [30]. Briefly, 300 µg of pro-
tein were mixed with 30% (w/v) trichloroacetic acid and 
10 mM TRIS buffer (pH 7.4) in equal volumes. After cen-
trifuging equals volumes of samples and thiobarbituric 
acid was mixed, followed by boil at 100  °C for 15  min. 
The pink pigment formed can be evaluated at 535  nm 
and expressed as mM/ mg protein [30].
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Protein oxidation
Carbonyl was evaluated using the procedures described 
by Reznick and Packer [31]. Three hundred µg of pro-
tein was added to 30% (w/v) TCA and centrifuged at 
1.180 g at 4 °C for 14 min. The pellet was resuspended 
in 10  mM 2, 4-dinitrophenylhydrazine and incubated 
in a dark room for 1 h with shaking every 15 min. The 
samples were washed and centrifuged three times in 
ethyl acetate buffer 1:1 ratio, and the pellet was resus-
pended in 6  M guanidine hydrochloride incubated 
for 30  min at 37  °C. The samples read at 370  nm and 
expressed as µmol/ mg protein [31].

Superoxide dismutase activity (SOD)
SOD activity was determined according to Misra and 
Fridovich [32]. Samples (300  µg/protein) were incu-
bated in 0.05  M of carbonate buffer with EDTA (pH 
10.2) at 30  °C following the addition of 150  mM epi-
nephrine. The decrease in absorbance was monitored 
for 1.5 min at 480 nm and the results were expressed in 
U/mg protein [32].

Catalase (CAT)
CAT activity was conducted as described by Aebi [33]. 
Three hundred µg of protein supernatant was used in a 
medium containing 50  mM phosphate buffer (pH 7.0) 
and 0.3 M of hydrogen peroxide. The assay was moni-
tored at 240 nm for 3 min at 20 °C, and the results were 
expressed as U/ mg protein [33].

Glutathione S transferase (GST)
The activity of GST was performed as described by 
Habig et  al. [34]. Two hundred μg of protein was 
added to a 0.1 M phosphate buffer (pH 6.5) containing 
1 mM EDTA. Then, 60 mM of reduced glutathione and 
30 mM of 1-chloro-4, 4-dinitrobenzene were added to 
start the reaction, which was followed at 340  nm for 
1 min [34]. The results were expressed in U/mg protein.

Reduced glutathione (GSH)
Reduced glutathione was assessed as described by His-
sin and Hilf [35]. The samples were incubated in 0.1 M 
phosphate buffer containing 5 mM-EDTA (pH 8.0) plus 
1 mg/ml of o-phthaldialdehyde (OPT) at room temper-
ature for 15 min. Then, their fluorescences were meas-
ured at 350 nm excitation and 420 nm emission [35].

Total sulfhydryl
The total and protein-bound sulfhydryl group con-
tents were determined as described by Aksenov and 
Markesbery [36]. The reduction of 5, 5-dithiobis 
(2-nitrobenzoic acid) by thiol groups was measured 

in homogenates of 200  mg PFC, resulting in the gen-
eration of a yellow-stained compound, TNB, whose 
absorption is measured spectrophotometrically at 
412 nm [36].

RNA isolation and gene expression by RT‑PCR
After tissue pulverization (50  mg), total RNA was 
prepared using Trizol® reagent (Invitrogen Life 
Technologies, Carlsbad, CA, USA) according to the man-
ufacturer’s recommendations [37]. Total RNA was dis-
solved in RNase-free water and its integrity was checked 
in the 260/280 nm ratio. Samples with a ratio > 1.8 were 
kept at – 80  °C until processing by Reverse Transcrip-
tion Quantitative Polymerase Chain Reaction (RT-PCR) 
analysis.

From the RNA extracted, we evaluated: PGC-1α, SIRT-
1, ATP5A, and B2M (Table  1), through the Rotorgene 
3000 (Corbett Research, Sydney, Australia) using Super-
script™ III Platinum® One-Step Quantitative RT-PCR 
System (Invitrogen Life Technologies, Carlsbad, EUA). 
The cycle threshold (CT) of each targeted gene was com-
pared with the CT of internal control and mRNA content 
was normalized by the 2−ΔΔCt formula [37].

Statistical analysis
The data had their distribution checked through the 
Shapiro–Wilk test, with a normal distribution. Then, 
the differences between groups were compared by 
using the Student t-test, and the data was expressed in 
mean ± SEM. A p-value of less than 0.05 was considered 
statistically significant, prism. V6 (Graph Pad Software 
Inc, San Diego, USA).

Results
Initially, we measured peak velocity by incremental 
exercise test in sedentary and trained obese mice, with 
no difference between groups (SED: 1.00 ± 0.28 vs. TF: 
1.17 ± 0.4  km/h, p = 0.17). However, after eight weeks 
of aerobic training, obese trained mice showed higher 
peak velocity than sedentary obese mice (SED: 0.80 ± 0.2 
vs. TF: 1.26 ± 0.3 km, p = 0.01), demonstrating a greater 

Table 1  Primer sequences

Gene name Forward primer sequence Reverse primer sequence

β2M TGA​CCG​TGA​TCT​TTC​TGG​TG ACT​TGA​ATT​TGG​GGA​GTT​
TTCTG​

PGC-1α AAC​AGC​AAA​AGC​CAC​AAA​
GA

AAG​TTG​TTG​GTT​CTTGA​

SIRT-1 CAC​AGC​AAG​GCG​AGC​ATA​
AA

GGC​AGA​CAA​TTT​AAT​GGG​
GTGAA​

ATP5A TCC​CTG​AAC​TTG​GAA​CCC​GA GGC​ATT​TCC​CAG​GGC​ATC​AA
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capacity for racing. Our training also improves the activ-
ity of citrate synthase, a marker for training adaptation in 
skeletal muscle (SED: 19.28 ± 0.88 vs. TF: 26.91 ± 1.12 U/
mg of protein, p = 0.0006). Our results demonstrate that 
exercise does not modulate oxidative stress biomarkers 
in the PFC of ob/ob mice, wherein no significant differ-
ences in both MDA (SED: 0.276 ± 0.10 µmol/ mg protein 
vs. TF: 0.437 ± 0.09 mM/mg protein, p = 0.2855) (Fig. 1A) 
and carbonyl (SED: 34.39 ± 11.38  µmol/mg protein vs. 
TF: 61.52 ± 16.97 µmol/mg protein, p = 0.2246) (Fig. 1B) 
levels were found.

Although the exercise had not changed the oxida-
tive stress-induced damage, it increased the overall 
antioxidant capacity. In the enzymatic system, while 
SOD (Fig.  1C) and CAT (Fig.  1D) activities remained 
unchanged, the exercise increased the GST activity 
(SED: 0.92 ± 0.34 U/mg protein vs. TF: 3.63 ± 0.73 U/

mg protein; p = 0.04) (Fig.  1E). In addition, the non-
enzymatic antioxidant components showed to be 
more responsive to exercise by increasing GSH con-
tent in 26% (SED: 5.07 ± 0.29 µmol /mg protein vs. TF: 
6.43 ± 0.06 µmol/mg protein; p = 0.001) and the sulfhy-
dryl groups in 66.7% (SED: 0.01 ± 0.002 mmol/mg pro-
tein vs. TF: 0.03 ± 0.001  mmol/mg protein; p = 0.02), 
Fig. 1F and G, respectively.

Additionally, evaluating genes involved in mito-
chondrial biogenesis, we demonstrate that AET 
up-regulates the expression of Peroxisome Prolifera-
tor-Activated Receptor Gamma Coactivator 1-alpha 
(PGC-1α) (p = 0.01) and Sirtuin-1 (SIRT-1) (p = 0.009), 
Fig. 2A and B, respectively. Furthermore, gene expres-
sion of the Adenosine Tri Phosphate Synthase 5A 
(ATP5A), which encodes the ATP synthase into the 
mitochondrial electron transport chain, was also 
increased following AET (p = 0.01) (Fig. 2C).

Fig. 1  Oxidative stress biomarkers in the PFC of ob/ob mice after eight weeks of AET. A MDA levels, B Carbonyl levels, p = 0.2855 and p = 0.2246 
respectively. Enzymatic antioxidant defense in the PFC of ob/ob mice after eight weeks of AET. C Superoxide dismutase—SOD activity, D Catalase—
CAT activity and E Glutathione-S-transferase—GST activity, p = 0.1595, p = 0.6882 and *p = 0.01 respectively. Non-enzymatic antioxidant defense 
in the PFC of ob/ob mice after eight weeks of AET. F Reduced glutathione (GSH) concentration, and G Total Thiols levels **p = 0.005; **p = 0.0016, 
respectively. Non-enzymatic antioxidant defense in the PFC of ob/ob mice after eight weeks of AET. A Reduced glutathione (GSH) concentration, 
and B Total Thiols levels **p = 0.005; **p = 0.0016, respectively. Sedentary (n = 6) and Trained (n = 6)
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Discussion
The PFC, located in the front region of the brain, is impli-
cated in several internal desires. It is the area responsible 
for executive function associated with the decision-mak-
ing processes related to the choice between good and 
bad, conflicting thoughts, judging future consequences 
of present actions, and working regarding ambitions, pre-
diction, and expectancies[38, 39]. In individuals with the 
normal function of the PFC, the ability to exert full con-
trol over the dietary desires for fatty and sugary food are 
effective, demonstrating the capacity for self-regulation/
self-control expectancies [38, 39].

Some models of obesity demonstrate reduced signaling 
in PFC, and corroborative studies have also shown that 
increased activity in a specific region of the PFC moder-
ates food cravings and consumption of these hyper-pal-
atable foods, whereas the reduced activity of the same 
region can increase food consumption [40–42].

All regions in the brain are highly susceptible to 
reactive species (RS), especially due to the ATP-
required high consumption of O2, amounts of excita-
tory amino acid transmitters and, calcium metabolism. 
Thus, the inappropriate balance between the pro-
duction and removal of RS, and the mitochondrial 

dysfunction-related energy supply, might deregulate 
the whole brain function. This is an important concept 
because mitochondria play a fundamental role in the 
life and function of several cells in the brain, and cel-
lular injury that impairs the capacity to generate ATP 
leads to cell death [43]. Mitochondria are dynamic 
organelles the function are modulated by the energy 
needs of tissues [44]. Exists a fine adjustment between 
nuclear and mitochondrial gene expression that con-
trols the assembly of the mitochondrial respiratory 
complex; therefore, the energetic demand controls 
phosphorylative capacity and the ATP supply [44]. In 
conditions of exercise, wherein exist a high energetic 
demand, mitochondrial biogenesis is triggered, activat-
ing the signaling cascade related to the SIRT-1, PGC-1α 
and nuclear respiratory factor-1/2 (NRF1/2), increasing 
the accurate communication between the nucleus and 
mitochondria to produce more mRNAs and mitochon-
drial proteins [45]. In turn, these increases in mito-
chondrial content, number, and energy demands need 
also to regulate the REDOX balance in mitochondria to 
maximize the capacity of mitochondria to perform oxi-
dative phosphorylation without an increase in RS leak-
ing or a decrease in antioxidant defense [46].

Fig. 2  Evaluation gene expression of ob/ob mice after eight weeks of AET in the PFC. A Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α), B Sirtuin-1 (SIRT-1) and C Adenosine tri phosphate synthase 5A gene (ATP5A). *p = 0.01; **p = 0.009 and *p = 0.02, 
respectively. Sedentary (n = 6) and T: trained (n = 6)
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In some neurodegenerative diseases, mitochondrial 
damage reduced oxidative phosphorylation capacity, 
increases RS production, leading to oxidative stress and 
negatively influencing brain function [47–49]. Data in the 
literature demonstrated the involvement of RS in alter-
nating the control of satiety and hunger behavior [50, 51]. 
Specifically, in PFC, previous data in the literature dem-
onstrate that obesity induced by high-fat diet, results in 
an increase of RS, oxidative stress biomarkers, and mito-
chondrial dysfunction [52, 53].

In our study, we demonstrated how exercise affects 
oxidative balance and mitochondrial biogenesis in the 
PFC of obese mice. Our findings demonstrate that AET 
improves antioxidant defense while up-regulates mito-
chondrial biogenesis and ATP synthase expressions. Our 
data showed that AET for 8 weeks improves GST activ-
ity, GSH, and total thiol levels, leading to an increase in 
antioxidant defense after 8 weeks. The activity of the glu-
tathione pathway is mediated by tissue levels of reduced 
glutathione associated with the action of the glutathione 
reductase. This enzyme is associated with the plasma 
membrane participating in converting of GSSG to GSH 
through the oxidation of electron carriers, including 
nicotinamide adenine dinucleotide phosphate in its oxi-
dized and reduced form (NADP+ and NADPH). These 
reactions are essential for the decrease of oxidative dam-
age that affects cellular components participating in the 
removal of ROS and metabolic detoxification [54, 55].

Neves et  al. [56] demonstrated that AET applied for 
8  weeks decreased OS associated with increased anti-
oxidant defenses in these CNS tissues. In addition, Aksu 
et  al. [57], similarly, evaluated the acute and chronic 
effects of AET on the PFC, hippocampus, and striatum, 
their results showed that AET does not induce OS in 
these different brain areas [58]. These results corrobo-
rate with Flôres et al. [59] where the group showed that 
12 weeks of AET increases GSH levels in PFC. Recently 
Comim et al. [60] showed that low-intensity training for 
8 weeks was able to reverse the impairment in memory 
and learning, in addition to the decrease in oxidative 
stress biomarker in encephalic tissues, including PFC.

In addition, seeking to elucidate the possible inter-
action between antioxidant defense and OS biomark-
ers with other components of oxidative metabolism, we 
also evaluated the expression of important mitochon-
drial transcription factors, PGC-1α and SIRT-1 [61]. In 
this sense, it was that the trained group had increased 
both genes compared to the sedentary group. Contrib-
uting to our findings, Steiner [62] and colleagues per-
formed 8  weeks of treadmill running (1  h/day, 6  days/
week at 25 m/min and 5% incline), and showed increases 
in gene expression of PGC-1α and SIRT-1 in the brain-
stem, hippocampus and hypothalamus. Additionally, 

recent studies have shown that the contraction of skeletal 
muscle in response to aerobic exercise can activate the 
signaling pathway SIRT-1 / PGC-1α / Fibronectin type 
III domain-containing protein 5 (FNDC5) in the central 
nervous system, the precursor of irisin through metabo-
lites including interleukin-6 and lactate that cross the 
blood–brain barrier promoting neurotrophic responses 
in different brains [63–65]. Supporting our data related 
to PGC-1α and SIRT-1 and the fact of AET may induce 
mitochondrial biogenesis, we quantify the levels of 
ATP5A, an important subunit of ATP synthase that can 
be used as an indicator of mitochondrial biogenesis. 
Our data showed that the levels of ATP5A in the trained 
group were higher than the control, showing that exer-
cise is capable to induce mitochondrial subunits biogen-
esis. Contributing to our data, Braga et  al. [66] showed 
that exercise during 5 week, one hour per day, 5 days per 
week at 60% of maximal capacity promoted an increase 
in the gene expression of OXPHOS subunits encoded by 
nDNA (Atp5a) in the lateral hypothalamus.

Taken together our data with previous data in the liter-
ature we can speculate that physical exercise can activate 
a complex communication between central and periph-
eric tissues leading an increase in brain metabolism [64, 
67]. In a future study, we plan to evaluate the OXPHOS 
subunit’s function, protein levels, and mitochondrial res-
piration capacity to direct link aerobic training with an 
improvement in PFC function from obese individuals. 
Raising the relevance of physical training as a therapeutic 
strategy to combat the global epidemic of obesity.

Conclusion
In summary, our study demonstrated that AET mini-
mizes the effects of the obesity-induced OS in the PFC by 
activating antioxidant defenses and mitochondrial tran-
script factors, that can improve mitochondrial biogenesis 
and function.
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