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Abstract 

Cardiopulmonary exercise testing (CPET) is an important tool to measure the cardiopulmonary fitness of an indi-
vidual and has been widely used in athletic, clinical and research settings. Most CPET focus on analyzing physiological 
responses during exercise. We contend that the post-CPET recovery physiological responses offer further diagnostic 
and prognostic information about the health of the cardiopulmonary and metabolic systems, especially when testing 
apparently healthy middle-aged and older adults. However, there are limited studies that investigate physiological 
responses during the post-CPET recovery, and even less so in middle-aged and older adults. Therefore, this current 
review is aimed at discussing the contribution of post-CPET recovery parameters to cardiopulmonary health and their 
potential applications in aging populations. In addition to the existing methods, we propose to examine the aerobic 
and anaerobic recovery threshold post-CPET as novel potential diagnostic and/or prognostic tools.

Key points 

1. This current review discusses the contribution of post-cardiopulmonary exercise testing (CPET) recovery 
parameters to cardiopulmonary health and their potential applications in aging populations.

2. In addition to the existing methods, we propose to examine the aerobic and anaerobic recovery thresholds post-
CPET as novel potential diagnostic and/or prognostic tools.
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Introduction
Cardiopulmonary exercise testing (CPET) is used to 
measure cardiorespiratory fitness and physiological 
responses to aerobic exercise in a wide variety of set-
tings. As such, a plethora of exercise testing protocols 
(progressive incremental exercise to volitional exhaus-
tion, time to exhaustion, constant load etc.) and modes 
(e.g. treadmill run/walk, cycling, rowing) are available 
to cater for different populations, ranging from ath-
letes to geriatric and clinical populations. Often, the 
examined variables include maximal/peak oxygen con-
sumption (V ̇O2max/peak), and threshold variables (e.g. 
ventilatory thresholds (VT), lactate thresholds (LT) and 
gas exchange thresholds) [1, 2]. These threshold vari-
ables are often used to determine aerobic and anaerobic 
threshold of an individual, representing an individual’s 
submaximal cardiorespiratory fitness [1, 2].

To determine an individual’s cardiorespiratory fit-
ness, individuals will strive to achieve his or her maxi-
mal/submaximal capacity, thereby also delineating 
their aerobic and anaerobic thresholds. In theory, all 
thresholds, in relation to either aerobic or anaero-
bic, should happen at the same time, for example gas 
exchange aerobic threshold = VT1 = LT1, but in a com-
plex physiological system, one may happen before the 
other or vice versa, which depends on the individuals’ 
physiological system [2]. For example, the physiological 
system deficit in individual “A” might be the metabolic 
system while in individual “B” might be the pulmonary 
system, where both individuals may achieve similar 
V ̇O2max/peak  with distinct threshold points [1–5]. 
These distinct thresholds can thus be used for diagnosis 
or prognosis for specific diseases/risk factors/deficits in 
a complex system.

While it is certainly informative to measure cardio-
pulmonary fitness during CPET, the physiological state 
during post-exercise recovery remains an important, 
yet under-studied physiological parameter. The most 
commonly studied parameters during recovery from 
exercise are excess post-exercise oxygen consumption 
(EPOC) and heart rate recovery (HRR) [6]. The degree 
to which gas exchange parameters may influence post-
CPET recovery have not been studied in detail. Since 
many physiological parameters can diagnose a risk 
factor or disease from exercise testing, the purpose of 
this review is to discuss the potential contribution of 
recovery parameters post-aerobic exercise (CPET and/
or constant power output/speed/inclination aerobic 
exercise e.g. 100W cycling load for 30  min) to cardio-
pulmonary health, and their potential applications in 
middle-aged and older adults.

The aging cardiovascular, pulmonary and skeletal muscle 
system
Chronological aging is associated with functional decline 
in the cardiovascular, pulmonary and skeletal muscle 
systems, particularly during dynamic, aerobic exercise. 
Specifically, chronological aging is associated with a 
gradual age-related decline in V̇O2max/peak as well as in 
the associated metabolic thresholds [7]. Cross-sectional 
studies suggest that the rate of decline in V̇O2max  was 
faster across chronological age (males =  ~ 26.0%, 
females =  ~ 27.0% ml/min/kg per decade; 68 males/103 
females [7]), while the decrease in ventilatory threshold 
(VT) (males =  ~ 13.0%, females =  ~ 13.5% ml/min/kg 
per decade) was less rapid with age [7]. In addition, stud-
ies suggest that the rate of decrease in V̇O2max acceler-
ates after the ages of 40–50 years old, from ~ 0.3 to 0.6% 
per year around 20–30  years old to > 2.0% per year in 
70–79  years old [8, 9]. The rate of decline in V̇O2max 
and shift in VT may be due, in part, to the age-related 
changes in the respiratory system [10, 11], cardiovascu-
lar system [11] and/or skeletal muscle system [12–14], 
given these are the major organ systems affecting an indi-
vidual’s aerobic capacity [15, 16]. In addition, the rate 
of decline in VT being slower compared with the rate 
of decline in V̇O2max has been suggested to be due, in 
part, to the selective loss of type 2 skeletal muscle fibres 
[12–14], resulting in a relative increase in type 1 fibres 
[17]. The age-related decline in V̇O2max was also dif-
ferent between training status of adults in the same age 
group; endurance-trained adults have a higher V̇O2max 
than physically-active adults, while both groups also have 
higher V̇O2max than sedentary individuals [18]. While it 
is important to understand the physiological responses 
during CPET, analysing physiological responses during 
post-CPET recovery can elucidate further details of one’s 
cardiopulmonary/ metabolic health.

Post-CPET recovery analyses have revealed age-asso-
ciated differences in cardiovascular and pulmonary vari-
ables. One study examined the effect of 70% V̇O2max 
exercise on post-exercise recovery gas exchange vari-
ables in older (~ 67.8 ± 7.5 years old; 6 males/2 females) 
and younger (~ 29.5 ± 6.4 years old; 16 males/6 females) 
adults [19]. The authors found that the recovery half-time 
kinetics of minute ventilation (V̇E), volume of carbon 
dioxide production per min (V̇CO2) and volume of oxy-
gen consumption per min (V̇O2) during recovery was sig-
nificantly slower in older adults compared with younger 
adults [19]. Age-related reduction in the central and/ or 
peripheral  CO2 chemosensitivity contribute to the slower 
recovery kinetics of V̇E, V̇CO2 and V̇O2 in older adults, 
as there is delayed removal of exercise-induced  CO2 
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production [20]. It has been postulated that age-related 
changes in lung mechanics and/or lung muscle strength 
in older adults are insufficient to explain the age-related 
reduction in ventilatory responses, therefore suggest-
ing the reduced ability of chemoreceptors and mecha-
noreceptors to sense and generate appropriate neural 
and ventilatory response [21]. Therefore, more research 
is needed to establish the key age-related changes affect-
ing the ventilatory responses. However, when compar-
ing between well-trained younger (~ 24.5 ± 3.7  years 
old; 8 males, 4 females) and well-trained older adults 
(~ 47.3 ± 8.6 years old; 8 males, 4 females) there were no 
significant differences between post-exercise recovery 
kinetics [22]. These studies suggest that although aging 
leads to slower post-exercise recovery kinetics, exercise 
training status of an individual can mitigate this age-
related decline which highlights the importance of main-
taining regular exercise training across the lifespan.

As described above, chronological aging is associated 
with functional decline in the cardiovascular and pulmo-
nary systems, observed during, and after dynamic exercise. 
This begs the questions as to whether individuals with age-
related diseases will present with unique physiological dif-
ferences during recovery from aerobic exercise. Therefore, 
it is important, in the context of age-related diseases, to 
examine physiological changes not limited to only during 
exercise, but also during the recovery period. Physiologi-
cal measurements obtained in the post-exercise state will 
provide valuable insight into physiological changes during 
the aging process, as well as recovery from aerobic exer-
cise in individuals with or without age-associated chronic 
diseases. At present, these two areas remain poorly under-
stood. Therefore, we need to explore existing studies that 
have examined post-CPET variables in disease states, and 
how they related to the integration or malintegration of 
the cardiopulmonary/ metabolic systems.

Diseased states and the determination of post‑CPET 
variables
Excess post‑exercise oxygen consumption (EPOC)
Excess post-exercise oxygen consumption (EPOC) 
occurs after an acute bout of exercise, with an immediate 

increase in V ̇O2. EPOC has been explained by the oxy-
gen debt hypothesis, where this process is necessary for 
the replenishment of oxygen debt incurred to remove 
lactate at the onset of exercise [23–25]. EPOC has also 
been suggested to play a role, in part, in maintaining 
physiological and biochemical homeostasis, for example, 
by: (i) restoring adenosine triphosphate (ATP)-phospho-
creatine (PCr) in skeletal muscle [26–28], (ii) replenish-
ing blood and muscle oxygen, and (iii) redistributing 
ions (increased sodium–potassium pump activity) [29]. 
Often, EPOC is analysed for its magnitude, duration and 
recovery half-life. With further understanding of exer-
cise physiology, the concept of EPOC has evolved, with 
the definition now stating that EPOC consists of a fast 
(within 1  h post-exercise) and a slow (after 1  h post-
exercise) component [30]. The duration of fast and slow 
components are dependent on the type, intensity, and 
duration of exercise being performed [30]. The slow 
component of EPOC also supports the removal of lac-
tate, and increased body temperature, blood flow and 
ventilation [30]. Hence, EPOC represents an accurate 
and precise means of evaluating the amount of exercise 
of optimal energy consumption required for health pro-
motion [31]. Individuals with heart failure and coronary 
artery disease have a prolonged EPOC [32] (Fig. 1).

The EPOC half-life recovery is the time taken for V̇O2 
to decrease from its maximal value during aerobic exer-
cise, to 50% of V̇O2max during post-exercise recovery. In 
this context, a prolonged EPOC half-life was observed 
in patients with chronic heart failure (~ 97 to 155  s; 72 
males; ~ 50  years old) after a bout of maximal aerobic 
exercise, compared with healthy individuals (~ 77  s; 13 
males; ~ 50 years old) [33]. The speed of half-life recov-
ery is related to the severity of chronic heart failure 
[34]. The delayed time constants of V̇O2 and V̇E during 
recovery in individuals with chronic heart failure have 
been explained, in part, by a delay in the recovery of 
energy stores in the skeletal muscle, as demonstrated by 
Cohen-Solal and colleagues [33]. Other factors, such as 
microcirculatory changes, sustained hyperpnea, carbon 
dioxide retention, prolonged recovery of cardiac out-
put, and increased cost of breathing [32, 33, 35] may also 

Fig. 1 Variables that can be analyzed post-CPET, for the study of systemic function during post-exercise
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contribute to the delayed EPOC in patients with chronic 
heart failure.

The rate at which V̇O2 recovers to resting values has 
been used, in part, as an index of systemic oxidative 
capacity (mainly attributed to the oxidative capacity 
of skeletal muscle, cardiovascular, and pulmonary) in 
healthy individuals [26, 33]. Thus, differences in oxygen 
kinetics post-CPET from individuals with age-related 
chronic disease can be used as a diagnostic and/or prog-
nostic tool, for example, in individuals with chronic heart 
failure [32, 33] and in individuals with type 2 diabetes 
[36]. The differences in post-CPET oxygen kinetics can 
be explained, for example, by impairments in metabolic 
[37] and/or cardiac function [33], which can affect physi-
ological responses post-CPET. When the analysis of post-
CPET oxygen kinetics is combined with other post-CPET 
variables, there is potential to identify specific physiolog-
ical impairments for recovery.

V̇O2 recovery delay
V̇O2 recovery delay is a measure of time from the end 
of exercise until V̇O2 falls permanently below V̇O2peak, 
defined and illustrated by Bailey et al. [38], where longer 
duration of the recovery delay represents an impaired 
cardiac reserve capacity in individuals with heart fail-
ure. Heart failure patients with preserved ejection frac-
tion (64 ± 10  years old; 15 males, 15 females), or with 
reduced ejection fraction (62 ± 11  years old; 18 males, 
2 females) had prolonged V̇O2 recovery delays, com-
pared with healthy control (58 ± 13  years old; 13 males, 
9 females) participants (25 s vs. 28 s vs. 5 s, respectively) 
[38]. Further, V̇O2 recovery delay was inversely related 
to cardiac output augmentation during exercise in both 
types of heart failure patients [38]. Therefore, measur-
ing V̇O2 recovery delay could be used to assess cardiac 
reserve capacity [38]. Future work should also determine 
whether V̇O2 recovery delay is associated with other age-
related conditions, such as peripheral vascular disease, 
and whether it has prognostic potential.

Peak oxygen pulse
Peak oxygen pulse is calculated by dividing V̇O2max  by 
maximal heart rate (HR) during exercise and is an indi-
cator of stroke volume and arteriovenous oxygen (a-vO2) 
difference when corrected for lean body mass [39]. In 
cardiac patients with mild-to-moderate heart failure (HF) 
followed for 19 ± 12  months, those without major car-
diac events had higher absolute (11.4 vs. 9.2 ml/beat) and 
body fat-adjusted peak oxygen pulse (15.6 vs. 11.9  ml/
beat), compared with patients that suffered major cardiac 
events [39]. Low peak oxygen pulse was the strongest 

predictor of clinical events (chi sq 10.5), independent of 
body fat, while peak oxygen pulse adjusted for body fat 
showed an even stronger prediction (chi sq 12.4) [39]. 
In the same study, even in most subgroups (including 
women, obese subjects, those receiving beta-blockers, 
and those with class III HF), peak  O2 pulse normalized 
for lean mass was similar to, or superior to peak  VO2 for 
predicting major clinical events [39]. Therefore, oxygen 
pulse during recovery from CPET offers an attractive 
means to uncover potential pathophysiological outcomes 
in the cardiopulmonary system.

Respiratory exchange ratio (RER)
Respiratory exchange ratio (RER),  CO2 produced/O2 con-
sumed, is an indirect measure of skeletal muscle capac-
ity for oxidative phosphorylation [40]. Post-exercise RER 
can be used to measure the RER overshoot- defining the 
highest RER value during exercise (A) and recovery (B), 
and defining the percentage magnitude between these 2 
points (A) and (B) [41]. Time to RER max was defined 
by duration between (A) and (B) [41]. Individuals with 
kidney transplant (51.4 ± 13.0  years old) showed signifi-
cant RER overshoot, with a RER magnitude lower than 
healthy individuals; further, the RER magnitude was able 
to stratify according to fitness levels [41]. This could be 
due to the reductions in capillary density, mitochondria 
density and/or the increased diffusion distance within 
skeletal muscle of individuals with kidney failures [42].

Heart rate recovery (HRR)
Heart rate recovery (HRR) has been suggested to reflect 
the balance between the reactivation of the parasympa-
thetic nervous system and the withdrawal of the sympa-
thetic nervous system- a delayed HRR would suggest a 
potential ailment in these systems. Indeed, parasympa-
thetic nervous system reactivation is the main contribu-
tor to HRR differences obtained post-CPET, as observed 
between athletes (20 ± 2  years old) and patients with 
chronic heart failure (55 ± 12  years old) but not with 
healthy, but sedentary age-matched young (20 ± 4  years 
old) and old adults (56 ± 6 years old), with the differences 
being most significant at 30 s post-CPET [43].

As well, HRR has been used to predict the onset of cor-
onary heart disease [44], cardiovascular-related mortal-
ity [45], non-cardiovascular mortality [46], and all-cause 
mortality [44, 47]. Up to one minute post-CPET HRR can 
predict mortality, with HRR at 10 s after CPET being the 
greatest predictor [48]. In addition, HRR does not coin-
cide with the return of V̇O2, V̇CO2 and V̇E to pre-exer-
cise levels, particularly in older adults [49], suggesting 
that HRR is an independent marker of aging.
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Heart rate recovery index (HRRI)
Heart rate recovery index (HRRI) is another measure of 
HRR and is defined as the ratio of acceleration time of HR 
during exercise (time from baseline HR to HR max) to the 
deceleration time of HR (time from HR max to baseline 
HR) post-CPET [50]. Cozlac and colleagues [50] assessed 
whether HRRI can be used to predict the response of 
cardiac patients to cardiac resynchronization therapy, a 
therapy to normalize patients’ heart rhythm. They found 
that responders and non-responders to cardiac resyn-
chronization therapy had significant differences in HRRI 
post-CPET [50]. The differences were associated with 
the cardiac phenotype and function, where responders 
to cardiac resynchronization therapy had significant left 
ventricular reverse modelling and larger left ventricular 
ejection fraction as compared to non-responders [50].

HRRI has also been used to assess aerobic fitness in a 
healthy cohort, where HRRI can predict V̇O2max, and 
maximum speed during CPET at 1  min post-exercise, 
and up to 2 and 3 min post-exercise for females (n = 130; 
average age = 24.6  years old), and males respectively 
(n = 718; average age = 27.6 years old) [51]. Future studies 
can examine the potential for HRRI post-CPET in mid-
dle-aged and older adults.

Prognostics for healthy aging
Given that the above recovery variables can be used to 
diagnose individuals with diseases, the next section will 
discuss the potential use of these recovery variables as a 
prognostics tool for healthy aging.

EPOC
In older adults (67.8 ± 7.5 years old), the slower recovery 
kinetics of V̇E, V̇CO2 and V̇O2, as compared to younger 
(29.5 ± 6.4  years old) adults [19], were attributed partly 
to age-related decreases in central and/or peripheral  CO2 
chemosensitivity, which delay the removal of exercise-
induced  CO2 [20] In addition, for functionally impaired 
older adults, EPOC was a better predictor for functional 
performance than either  VO2peak or  VO2 during exer-
cise [52], compared with age-matched, functionally com-
petent adults, whose  VO2 values during exercise testing 
were better predictors for functional performance [52].

In another study, oxygen uptake in physically inac-
tive, middle-aged adults during aerobic exercise was 
similar between continuous cycling (30  min at 60% 
V̇O2max) or interval cycling (alternating bouts of 80% 
V̇O2max  (2  min) and 40% V̇O2max  (1  min) repeated 6 
times) [53]. However, interval cycling resulted in signifi-
cantly higher EPOC, compared with continuous cycling, 
despite similar energy expenditure during both exercise 
modalities [53]. One explanation could be due to the 

energy demands between the two exercise modalities, 
with interval exercise more reliant on anaerobic glyco-
lysis, compared with continuous cycling. Thus, there is 
greater production of  H+ ions, decreased efficiency of 
recovery of metabolic pathways, thereby increasing oxy-
gen demand post-exercise (observed as EPOC) during 
recovery.

RER
The training status of an individual indicates exercise 
tolerance. Frey and colleagues examined RER during 
post-exercise recovery from low- (LI; ~ 65% V̇O2max) 
versus high-intensity (HI; ~ 80% V̇O2max) aerobic exer-
cise, between trained (27.8 ± 2.6 years old; 6 females) and 
untrained individuals (24.3 ± 1.6  years old; 7 females), 
and found no significant differences between groups [54]. 
However, HI exercise resulted in higher RER compared 
with LI exercise in both groups [54]. Furthermore, RER 
decreased rapidly within the first 10  min following LI 
and HI, and was lower than baseline throughout 60 min 
of recovery in untrained individuals [54]. In the trained 
individuals, RER also decreased rapidly through the 
first 10 min after LI exercise, and 20 min after HI exer-
cise [54]. The lower RER observed during post-exercise 
in untrained participants suggests that untrained indi-
viduals relied more on fat oxidation during post-exercise 
recovery, compared with trained individuals. Also, lower 
RER during the post-exercise period may implicate  CO2 
retention in bicarbonate pools, leading to a state of aci-
dosis by increasing hydrogen ions and lowering of pH.

Advantages of measuring post‑CPET variables
Although some recovery kinetics are associated with car-
diorespiratory fitness variables measured during exercise, 
the recovery oxygen kinetics has advantages of being 
independent of the level of exercise [32, 33, 55], allow-
ing its use as a prognostics biomarker when individuals 
are unable to achieve maximal efforts during exercise. In 
addition, V̇O2peak determination depends on each indi-
vidual’s motivation and test termination criteria, where 
both do not influence the oxygen kinetics of recovery.

Indeed, recovery oxygen kinetics is able to further prog-
nose individuals with heart failure, where lower recov-
ery V̇O2 is associated with higher mortality, apart from 
using only oxygen kinetics during CPET [56]. In addition, 
recovery V̇O2 is a better predictor than V̇O2peak at mor-
tality of individuals with cardiac heart failure [56].

Combined post-CPET variables such as gas exchange 
and heart rate have been observed to differentiate three 
different forms of congenital heart lesions [57]. Although 
this example is not an age-related disease, it provides 
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insights into how post-CPET variables can indicate 
impairment in human physiology. More studies are nec-
essary to establish how post-CPET variables are related 
to the physiological systems.

Given the limited studies available for post-CPET vari-
ables on the aging population, more research is needed to 
further understand whether recovery kinetics can prog-
nose other age-related diseases and improve understand-
ing of aging physiology.

Concept of recovery variables analysis (absolute values vs. 
thresholds)
By further establishing which other gas exchange vari-
ables is able to indicate health risk factors, exercise inter-
ventions can be explored and recommended to prevent or 
minimise the potential age-related pathologies. However, 
most studies have analysed absolute points on individual 
gas exchange variables. For example, EPOC is commonly 
analysed for its magnitude (highest point), duration (back 
to baseline), and half-life (mid-point) (Fig. 2), similar to 
other variables measured during recovery such as HRR. 
These recovery variables have not been observed from a 
recovery threshold perspective (aerobic and anaerobic 
recovery thresholds; Fig.  2), where V̇O2 and V̇CO2 can 
be plotted to determine the point where recovery aerobic 
threshold occurs (inflection during recovery). Based on 
the concept where the 2 thresholds (aerobic and anaero-
bic) occur, we propose in this paper, for future studies to 
examine recovery thresholds in the healthy and diseased 
population.

Applying the concept of determining an individual’s 
aerobic threshold rather than absolute V̇O2peak [2], here 
we propose the measurement of recovery threshold dur-
ing post-CPET, apart from the absolute points of an indi-
vidual variable such as EPOC.

Recovery threshold measurement
Traditionally, to detect the aerobic threshold during 
a bout of exercise, one would examine two variables 
against each other, for example, plotting V̇CO2 against 
V̇O2; the inflection point would then indicate the aerobic 
threshold (Fig. 3a), or plot V̇E against V̇CO2; the inflec-
tion point would indicate anaerobic threshold. From a 
recovery perspective, these recovery thresholds have 
not been explored and we speculate whether the inflec-
tion point (Fig. 3b) could suggest the recovery of aerobic 
or anaerobic threshold systems (Fig.  2). These recovery 
thresholds (aerobic or anaerobic systems) can indicate 
the demands on the cardiopulmonary/metabolic systems 
to return to baseline and to provide prognostic value for 
identifying age-related physiological decline. In addition, 
the slope of the recovery variable of interest, for exam-
ple, the initial slope prior to the recovery threshold, and 
the slope after the recovery threshold (Fig.  3b) can be 
used to identify age-related physiological deficits, where 
they can be compared across age-related conditions 
(Fig. 3c and d). In addition, when Fig. 3a–d are combined 
together in a proposed 3-dimensional model (Fig.  3e), 
the area under the 3-dimensional curve can be compared 
(Fig. 3e). In addition, this concept can be applied to the 
proposed anaerobic recovery threshold, by using the V̇E 
against V̇CO2 graph for example. Of course, future stud-
ies are required to examine this potentially novel method 
of measuring recovery aerobic and anaerobic thresholds.

Given that populations with age-related diseases such as 
individuals with type 2 diabetes, having metabolic impair-
ment such as lower capacity to utilise carbohydrate [58] and 
individuals with heart failure with impaired cardiac reserve 
capacity has been observed with a delayed V̇O2 recovery 
[38], these populations may potentially have a slower recov-
ery threshold with a larger area under the curve for post-
exercise, compared with the healthy population.

Conclusions
The use of CPET has mostly been explored during the 
exercise phase, with limited number of studies report-
ing the post-exercise recovery phase. Typically, variables 
(EPOC, HRR, RER) that were examined during post-
exercise recovery phase were individually analysed. In 
this narrative review, we have proposed the idea of ana-
lysing the post-exercise recovery relationship between 
variables, such as plotting V̇CO2 against V̇O2, for the 
analysis of recovery thresholds, and the time taken to 
achieve these thresholds post-exercise. The analysis of 
post-CPET variables could potentially provide further 
understanding of aerobic and anaerobic recovery thresh-
olds, and the potential to have significant utility in age-
associated disease prognostication.

Fig. 2 An example of a typical EPOC absolute measurements (red 
boxes and arrows: magnitude, duration, and area under curve) and 
the proposed recovery threshold measurements (blue boxes and 
arrows: anaerobic and aerobic recovery thresholds)
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Abbreviations
EPOC   Excess post-exercise oxygen consumption
HR   Heart rate
HRR   Heart rate recovery
HI   High intensity
L   Liters
LI   Low intensity
LT   Lactate Threshold

V̇O2max/peak  Maximal/Peak oxygen consumption
V̇E   Minute ventilation
min   Minute
RER   Respiratory exchange ratio
VT   Ventilatory threshold
V̇CO2   Volume of carbon dioxide produced per min
V̇O2   Volume of oxygen consumed per min

Fig. 3 Schematic illustration plots of ̇V̇CO2 against V̇O2 a during exercise and b post-exercise of a younger female adult, and c during exercise 
and d post-exercise of a middle-aged female adult e hypothetical 3-dimensional graph across time (during CPET and post-CPET), comparing one 
younger and one middle-aged adults, where a to d are expressed in a 3-dimensional graph across time (illustration not drawn to scale). Dotted lines 
represent aerobic threshold of a younger (a; blue dotted line) and a middle-aged adult (c; red dotted line). Proposed recovery aerobic threshold of a 
younger (b; blue dotted line) and a middle-aged female adult (d; red dotted line) (unpublished results)
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