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Abstract
Background  Endurance athletes (EA) are an emerging population of focus for cardiovascular health. The oxygen 
uptake efficiency plateau (OUEP) is the levelling-off period of ratio between oxygen uptake (VO2) and ventilation (VE). 
In the cohort of EA, we externally validated prediction models for OUEP and derived with internal validation a new 
equation.

Methods  140 EA underwent a medical assessment and maximal cycling cardiopulmonary exercise test. Participants 
were 55% male (N = 77, age = 21.4 ± 4.8 years, BMI = 22.6 ± 1.7 kg·m− 2, peak VO2 = 4.40 ± 0.64 L·min− 1) and 45% female 
(N = 63, age = 23.4 ± 4.3 years, BMI = 22.1 ± 1.6 kg·m− 2, peak VO2 = 3.21 ± 0.48 L·min− 1). OUEP was defined as the highest 
90-second continuous value of the ratio between VO2 and VE. We used the multivariable stepwise linear regression to 
develop a new prediction equation for OUEP.

Results  OUEP was 44.2 ± 4.2 mL·L− 1 and 41.0 ± 4.8 mL·L− 1 for males and females, respectively. In external validation, 
OUEP was comparable to directly measured and did not differ significantly. The prediction error for males was − 0.42 
mL·L− 1 (0.94%, p = 0.39), and for females was + 0.33 mL·L− 1 (0.81%, p = 0.59). The developed new prediction equation 
was: 61.37–0.12·height (in cm) + 5.08 (for males). The developed model outperformed the previous. However, the 
equation explained up to 12.9% of the variance (R = 0.377, R2 = 0.129, RMSE = 4.39 mL·L− 1).

Conclusion  OUEP is a stable and transferable cardiorespiratory index. OUEP is minimally affected by fitness level 
and demographic factors. The predicted OUEP provided promising but limited accuracy among EA. The derived new 
model is tailored for EA. OUEP could be used to stratify the cardiorespiratory response to exercise and guide training.

Keywords  Oxygen uptake efficiency plateau, Cardiopulmonary exercise testing, Endurance athletes, Prediction 
equation, Cardiorespiratory fitness, Cardiovascular health
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Introduction
Endurance athletes (EA) regularly participate in competi-
tions and are exposed to high physical loads [1]. Cardio-
vascular diseases (CVD) are still a significant problem 
in the health care system [2]. Strenuous exercise could 
elevate the risk of CVD [3]. Hence, the development 
and validation of novel, reliable indices remain crucial 
to enable a comprehensive interpretation of cardiorespi-
ratory fitness [4]. The gold-standard metric of athletic 
performance is oxygen uptake (VO2) [5]. However, VO2 
is not the only one, and the usefulness of the other mea-
sures should be investigated [6, 7].

EA usually does not fit into the cardiorespiratory ref-
erence values from general population [8–10]. Both, 
the VO2 and ventilation (VE) are poorly predicted and 
mostly underestimated by common prediction equa-
tions in EA [8, 11]. Moreover, measurements of abso-
lute value of variables are often an insufficient source of 
knowledge about cardiovascular physiology in EA [12, 
13]. Recent focus has been applied to ratios of oxygen 
uptake efficiency measures which is described by the cor-
respondence between VO2 and VE [14, 15]. Moreover, it 
is sometimes not feasible to perform cardiopulmonary 
exercise test (CPET) and directly measure cardiorespira-
tory fitness. Thus, the importance of prediction equations 
based on non-exercise and body measures emerge [16].

The oxygen uptake efficiency plateau (OUEP) was 
originally introduced by Sun et al. [17]. OUEP relates to 
different periods of exercise than the oxygen uptake pla-
teau [17, 18]. OUEP explains the levelling-off between 
VO2 and VE [17]. OUEP can be plotted in the majority of 
exercise tests because it occurs early, just before the aero-
bic threshold [17, 19]. OUEP occurs before hyperventi-
lation due to demanding exercise leads to acidemia [17]. 
If OUEP falls below 65% of the predicted value, there is 
a suspected pathology [19]. However, among numerous 
cardiorespiratory indices, EA often noted an underes-
timation when compared to the untrained subjects [20, 
21]. As it merges cardiac and respiratory systems, it may 
be superior to previous risk indicators (i.e. heart rate, 
ventilatory efficiency, oxygen pulse, etc.) [19].

The issues of prevention and diagnosis of cardiovascu-
lar diseases (CVD) among EA are increasingly gaining 
attention [3]. Adjustment between VE and VO2 emerge 
as a valuable, interesting direction in sports cardiology. 
Hypo- or hyper- ventilation is influenced mostly by car-
diovascular functions, however, peripheral and pulmo-
nary factors also contribute here [22]. Merge between 
VE and VO2 could be used in clinical setting to grade the 
CVD and in the sports cardiology to stratify impairment 
in physical training or to assess fitness [23–25].

OUEP should be stable even in highly fit athletes and 
varies only slightly [17]. However, no studies have con-
firmed its replicability in the EA population so far. 

Moreover, the prediction equation for OUEP has never 
been externally validated on other populations. We 
noticed a significant understudied area of knowledge. 
This research corresponds and complements to the pre-
vious NOODLE studies about ventilatory efficiency and 
oxygen uptake efficiency slope in EA [10, 26].

In this research, we aimed to: (1) clarify whether OUEP 
remains reproducible in a group of EA by external valida-
tion of the previous prediction equation, and (2) system-
ize the usefulness of OUEP in EA by development and 
internal validation of a new non-exercise model.

Materials and methods
Study setting
This study received approval from the Bioethics Com-
mittee of the Medical University of Warsaw. Participants 
provided their written informed consent. We applied 
the STROBE statement of EQUATOR Network guide-
lines [27]. The checklist is included in the Supplemen-
tary Material 1 (Table S1). The recruitment period was 
2022–2023.

Eligibility criteria
Firstly, we applied the following inclusion criteria for 
EA: (1) age ≥ 18 years, (2) ≥ 4-year experience in regular 
endurance training, (3) membership in a sports asso-
ciation and national elite or development teams, and (4) 
regular participation in competitions on the regional and 
international levels. Participants were assigned to Class 
3–5 in McKay classification framework [28].

Further, we ensured a consultation with a medical doc-
tor to confirm the overall health of our participants. We 
used rigorous exclusion criteria that considered past 
medical history and ongoing symptoms. The physician 
looked for the presence of any of the following: pulmo-
nary diseases, CVD, neurological and mental disorders, 
haematological deviations, and orthopaedic injuries; 
and we asked about habitual tobacco smoking. If we 
confirmed a past medical history, the physician refused 
the subject from CPET. Precise definitions of examined 
abnormal health criteria are described in Table 1.

Finally, we considered effort as maximal when there 
was a: (1) ≥ 30-s VO2 plateau, (2) respiratory exchange 
ratio (RER) ≥ 1.05, (3) maximal heart rate ≥ 80% of the 
age-predicted, (4) EA declined further exercises, and (5) 
declared exhaustion was ≥ 18 points on the Borg scale. 
We chose these criteria from cardiopulmonary refer-
ence data for endurance athletes [8, 29]. All listed crite-
ria of maximal effort were obligatory to include the EA in 
this study. If the CPET was submaximal the participant 
was not included in the analysis. The CPET was defined 
as submaximal when EA did not reach all of the previ-
ously listed criteria. Failure to meet any of these criteria 
excluded the participant.
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The flowchart presenting recruitment process is pre-
sented on the Fig. 1.

Cardiopulmonary exercise testing
Continuous ramp CPET was performed on a Cyclus II 
Cycling Ergometer (RBM, Leipzig, Germany). All CPET 
was conducted in unified procedures of the Institute of 
Sport - National Research Institute in Warsaw (https://
insp.pl, accessed on 6th March 2024). The exercise began 
with pedalling without load for 2–3 min to warm up. The 
incremental protocol started with a workload between 55 
and 70 W and increased by 0.17–0.28 W·s− 1. The starting 
workload and grading of workload during CPET were set 
after reaching agreement between the supervising physi-
ologist and each single EA in the aforementioned ranges. 
Participants were guided by the physiologist and encour-
aged verbally to achieve maximum results.

Measuring procedures
We obtained several body indices: height, body weight, 
BMI, and body surface area (BSA). We measured body 
weight with the TANITA scale (TANITA Corporation, 
Arlington Heights, IL, USA) before breakfast. We mea-
sured height using the stadiometer (Seca GmbH & Co., 
Hamburg, Deutschland) in the morning (along with 
body weight). We calculated BSA from Du Bois & Du 
Bois Eq.  [49]. Raw breath-by-breath data for ventilatory 
measures were collected using the Hans Rudolph V2 
Face Mask (Hans Rudolph, Inc, Shawnee, KS, USA). Dur-
ing the data collection process, we used the Cortex B3 
Metamax metabolic system (CORTEX Biophysik GmbH, 
Leipzig, Germany). We recorded: VE, VO2, VCO2, respi-
ratory rate, and tidal volume. Gas analysing devices were 
calibrated individually for all participants before CPET. A 
Polar H10 heart rate sensor with a chest strap was used 
to measure heart rate. The heart rate sensor was continu-
ously paired with the Cyclus II Cycling Ergometer. All 
obtained indices were averaged in the 15-second inter-
vals. We excluded the first minute of loaded protocol to 
minimize noise variables and determined OUEP as the 
highest continuous 90-second average of VO2/VE ratio 
plotted against time [17]. We excluded all the enrolled 
individuals with missing data to ensure the maximal 
credibility of the results.

Screening for prediction equation for OUEP
To select previous prediction equations for OUEP, we 
examined the 5 databases: PubMed, Scopus, Web of Sci-
ence, Google Scholar, and Medline. Applied keywords 
were: “OUEP”, “oxygen uptake efficiency plateau”, “cardio-
pulmonary exercise tests”, “prediction equation”, “refer-
ence values”, and “oxygen uptake efficiency”. We included 
only models which were derived from healthy, adult 

Table 1  Abnormal health findings considered as the exclusion 
criteria
1. Pulmonary diseases
- Chronic obstructive pulmonary disease
- poorly controlled bronchial asthma
- blood saturation < 95%
2. Cardiovascular diseases
- significant heart rhythm disturbances in the 12-lead ECG (e.g., ven-
tricular and supraventricular arrhythmias, atrial fibrillation)
- features of myocardial ischemia,
- prolongation of the QT interval in the 12-lead ECG
- structural heart disorders detected in cardiac echocardiography (e.g., 
hemodynamically relevant valvular defects, hypertrophic cardiomyopa-
thy, systolic dysfunction of the right or left ventricle),
- decompensated blood pressure (with increases above 160/100 
mmHg).
3. Neurological and mental disorders
4. Significant deviations found in CBC
- Leukocytosis above 10 000 ∙ mm− 3

- Anaemia with Hb level < 10 g ∙ d− 1

5. Exercise-limiting musculoskeletal injuries
Note Any of the above health conditions were considered as the mandatory 
exclusion criteria during pre-participation medical follow-up. Abbreviations: 
12-lead ECG, 12-lead electrocardiography; CBC, complete blood count; Hb, 
blood haemoglobin concentration

Table 2  Study population
Variable All EA 

[N = 140]
Males 
[N = 77]

Females 
[N = 63]

A. Baseline characteristics
Age (years) 22.7 ± 4.6 21.8 ± 4.8 23.8 ± 4.2
Height (cm) 174.8 ± 9.9 181.6 ± 6.3 166.3 ± 6.2
Body weight (kg) 69.3 ± 10.1 76.1 ± 7.6 61.0 ± 5.5
BMI (kg·m− 2) 22.6 ± 1.7 23.1 ± 1.7 22.1 ± 1.6
BSA (m2) 1.84 ± 0.12 1.97 ± 0.18 1.68 ± 0.10
Sport 
discipline

Triathlon or 
cycling

56 (40.0) 30 (47.6) 26 (33.8)

Speedskating 59 (42.1) 26 (41.3) 33 (42.9)
Other endur-
ance sports

25 (17.9) 7 (11.1) 18 (23.3)

B. Exercise performance
HR (beats·min− 1) 190.9 ± 8.6 190.8 ± 8.7 191.0 ± 9.1
VE (L·min− 1) 154.5 ± 34.1 176.3 ± 26.3 127.8 ± 21.1
VO2peak (L·min− 1) 3.86 ± 0.82 4.40 ± 0.64 3.21 ± 0.48
VO2peak/kg (mL·kg− 1·min− 1) 55.2 ± 8.6 57.8 ± 9.0 52.1 ± 7.0
% pred. VO2peak 144.5 ± 25.9 130.6 ± 20.2 161.4 ± 21.8
OUES (mL·min− 1/L·min− 1) 3.96 ± 0.90 4.41 ± 0.87 3.41 ± 0.58
OUEP (mL·L− 1) 42.7 ± 4.7 44.2 ± 4.2 41.0 ± 4.8
Abbreviations BMI, body mass index; BSA, body surface area; HR, peak heart 
rate; VE, peak minute ventilation; VO2peak, peak oxygen uptake; OUES, oxygen 
uptake efficiency slope; OUEP, oxygen uptake efficiency plateau

Note Upper rows (Part A) present characteristics of study group and lower 
rows (Part B) present exercise performance. OUES was calculated from VO2/
VElog during the whole exercise effort. OUEP was considered the highest 
continuous 90-second average from the VO2/VE ratio. Measures are presented 
as mean ± standard deviation or number (percentage). Predicted VO2peak was 
calculated from the Wassermann and Hansen Eq. (31)

https://insp.pl
https://insp.pl
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populations (age ≥ 18 years, no existing co-morbidities). 
One prediction equation for OUEP has been found [17]:

	
OUEP[mL · L−1] =42.18− 0.189 · age [in years]

+ 0.036 · height [in cm] ]−3.02[ if female]

The equation was derived from the mixed treadmill and/
or cycling protocol from a healthy population of 417 par-
ticipants aged 17–74 years. The population of the deri-
vation study also had well-trained athletes (N = 57) with 
> 140% of predicted VO2peak according to the Wasser-
man & Hansen Eq.  (31) and those well-trained athletes 
were not included in the model derivation process. The 
CPET started with a 3-min resting and 3-min warm-up 

followed by an incremental ramp cycling protocol and 
terminated with at least 2-min recovery.

Statistical analysis
To determine the data distribution, we used the Shapiro-
Wilk test and visually examined the corresponding Q-Q 
plots. We presented categorical variables as number 
(percentage) and continuous variables as mean ± stan-
dard deviation. We used IBM SPSS (version 29.0, IBM, 
Armonk, NY, USA) for analyses and GraphPad Prism 
(version 10.1, GraphPad Software, San Diego, California 
USA) to develop the plots. We set p < 0.05 as significant.

The external validation of the prediction equation for 
OUEP was determined by comparing observed and pre-
dicted values by Student’s t-test for independent samples 

Fig. 1  Schematic representation of the participants recruitment procedure. Abbreviations EA, endurance athlete; CPET, cardiopulmonary exercise test
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and calculating root-mean-square error (RMSE). The 
compliance of predicted to observed OUEP was shown 
in Bland-Altman plots. The variance explained by the 
previous model was examined by regressing observed 
OUEP against predicted OUEP and presented as an 
adjusted coefficient of determination (R2). The correla-
tion of OUEP and VO2peak was assessed by the Pearson 
Correlation Coefficient (R). The new model was derived 
with the stepwise multiple linear regression. The method 
for model derivation was selected by assessment of data 
assumptions (collinearity, correlations, independence 
of observations, residuals, and leverage plots). Espe-
cially, we included only significant variables with p < 0.05. 
Finally, the model was internally validated with the boot-
strapping from 10,000 iterations [30].

The sample size was evaluated post-hoc in the G*Power 
software [31]. For all applied statistical methods, the 
study population achieved significance, a large effect size, 
and a power of 0.99. Results were presented following the 
current 11th Edition of guidelines of the American Medi-
cal Association Manual of Style: A Guide for Authors and 
Editors [32].

Results
Study population
Of 140 EA, 77 (55.0%) were male and 63 (45.0%) were 
female. Table  2 presents the brief participants’ basic 
demographic and exercise characteristics, while a 
detailed description of the study population is provided 
in the Supplementary Material (Table S2). Participants 
represented the following endurance disciplines: 56 
(40.0%) triathlon or cycling, 59 (42.1%) speedskating, and 
25 (17.9%) other disciplines. The predicted VO2peak was 
144.5 ± 25.9% and ranged from 90.6 to 216.2% accord-
ing to Wasserman and Hansen equation. Females had 
lower OUEP than males for an average of 3.2 mL·L− 1 
(p < 0.001). OUEP was 44.2 ± 4.2 mL·L− 1 (range 36.2–54.2 
mL·L− 1) and 41.0 ± 4.8 mL·L− 1 (range 29.4–53.0 mL·L− 1) 
for males and females, respectively. VO2peak was signifi-
cantly correlated with OUEP (R = 0.32, p < 0.001).

Derivation of the new model
We evaluated several non-exercise measures (sex, age, 
height, body weight, BMI, and BSA) for their suitabil-
ity in building the model. The parsimonious bivariable 

model included the height and was adjusted to sex. The 
derived equation for OUEP is presented in Table 3.

The model was responsible for 12.9% of the variance 
in OUEP (R = 0.377, R2 = 0.129). Overall regression was 
significant (F(2, 137) = 11.33, p < 0.001). In Fig. 2 we com-
pared observed and predicted OUEP by regressing one 
against another. As expected by the limited R2 the data 
were scattered both for males and females. The model’s 
RMSE was 4.39 mL·L− 1. Predicted OUEP equals 42.67 
mL·L− 1 which was 100.2% of the observed values. The 
difference was 0.07 mL·L− 1 for the whole population. 
Bland-Altman plots presenting the agreement between 
observed and predicted OUEP are in Fig. 3. In both males 
and females, the OUEP was slightly underestimated. The 
bias was − 0.77 mL·L− 1 and − 0.53 mL·L− 1 for males and 
females, respectively. The limit of agreement was wider 
in females (–9.25 mL·L− 1 to 9.38 mL·L− 1) than in males 
(–7.99 mL·L− 1 to 7.85 mL·L− 1).

External validation of prediction equation for OUEP
The external model overestimated OUEP by only 0.08 
mL·L− 1. The total difference was 0.19% and RMSE was 
4.48 mL·L− 1. In the whole population, values did not 
differ significantly (t(278)= − 0.18, p = 0.86). The exter-
nal model contributed to the 9.9% of the variance in the 
directly observed OUEP (R2 = 0.099).

Briefly, higher bias was noted for males than females. 
For males, the OUEP was underestimated by 0.42 mL·L− 1 
(0.94%). As in the total population, predicted values 
also did not differ significantly in males (t(152)= − 0.86, 
p = 0.39). RMSE for males was 4.16 mL·L− 1. A similar 
relationship was observed among females. However, 
the model overestimated OUEP by 0.33 mL·L− 1 (0.81%) 
in females. The error was not significant (t(124) = 0.54, 
p = 0.59). RMSE for females was 4.84 mL·L− 1. A visual 
representation of model prediction capacity stratified by 
sex is presented in Fig. 4. As expected, the limits of agree-
ment were wider than in the developed model. The limit 
of agreement for males was − 8.59 mL·L− 1 to 7.76 mL·L− 1. 
For females, the limit of agreement ranged between 
− 9.21 mL·L− 1 to 9.87 mL·L− 1.

Table 3  Multivariable prediction equation for OUEP
Covariate Estimate Standard Error β 95% CI p-value

LL UL
Intercept 61.369 9.92 --- 41.747 80.991 < 0.001
Sex 5.078 1.18 0.539 2.749 7.407 < 0.001
Height –0.123 0.06 –0.257 –0.240 –0.005 0.041
Abbreviations 95% CI, 95% confidence interval; LL, lower limit; UL, upper limit

Note Sex is 1 for males and 0 for females
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Fig. 4  Bland-Altman plots for external validation of previous models. Abbreviations UL, upper limit of agreement; LL, lower limit of agreement. Note Panel 
A (blue color) represents males and panel B (green color) represents females. Upper dotted line represents upper limit of agreement and lower dotted 
line represent lower limit of agreement. Area between dotted lines represent model’s accuracy

 

Fig. 3  Bland-Altman plots of the prediction accuracy of derived models. Abbreviations UL, upper limit of agreement; LL, lower limit of agreement. Note 
Panel A (orange color) represents males and panel B (yellow color) represents females. Upper dotted line represents upper limit of agreement and lower 
dotted line represent lower limit of agreement. Area between dotted lines represent model’s accuracy

 

Fig. 2  Correlation between observed and predicted OUEP. Abbreviations OUEP, oxygen uptake efficiency plateau. Note Panel A represents males and 
panel B represents females. The central red line represents the trend. The blue dotted lines represent 95% confidence intervals. The plot presents univari-
able regression analysis of observed OUEP against predicted OUEP
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Discussion
To the best of our knowledge, this is the first external 
validation of prediction equations for OUEP. Moreover, 
there is no research so far that has evaluated the stabil-
ity of OUEP in EA. In this article we found that following 
areas: (1) OUEP is a replicable cardiorespiratory measure 
between EA and untrained healthy individuals, (2) OUEP 
predicted by somatic measurements provided promising 
but limited accuracy and (3) OUEP is a valuable marker 
when stratifying cardiorespiratory response profiles in 
EA.

EA is a unique population. They do not fit into the 
general reference values for the majority of cardiovas-
cular measurements [33]. Regular physical activity has a 
brilliant preserving effect on the cardiovascular system. 
Endurance training causes a slower decline of fitness with 
aging (e.g. VO2peak or maximal heart rate) [8, 34]. Our 
previous studies showed significant inaccuracies in pre-
diction models for VO2peak or heart rate when applied 
to athletic individuals [20, 21]. So far as we know, OUEP 
was never deeply analyzed in context of sports cardiology 
in EA.

OUEP remains a relatively understudied marker. Sun et 
al. found that, when OUEP drops below 65% of the pre-
dicted value, it can suggest pathology [19]. In our EA, 
no one observed such a difference. Only two females 
showed a difference of 11.3 mL·L− 1. For all the remain-
ing participants calculated OUEP did not differ more 
than 10 mL·L− 1, i.e. around 25% error. What is more, 
no one exceeded the 35%. The highest calculated under-
estimation was 27.7% (11.3 mL·L− 1 in both females). 
The variance explained by the derived model was 12.9% 
(R2 = 0.129). Comparably, the variance explained by the 
external model [17] was 9.9% (R2 = 0.099). Although those 
values are limited, both are comparable, even though the 
models were developed from different populations.

It is worth noting that the only variable missing from 
the original equation presented by Sun et al. is age [17]. 
This probably results from our cohort age distribution 
(22.7 ± 4.6 years old). Age had only minor variance in our 
homogenous sample and did not reach significance. This 
is an emerging point in the discussion of our results and 
a great recommendation for further studies on OUEP 
predictions in populations of EA with a wider age distri-
bution. Moreover, the original derivation study by Sun et 
al. included only 57 well-trained participants [17]. Our 
study has a wider population of 140 EA. Therefore, the 
provided results seem to be more reliable.

Moreover, OUEP has further advantages. Assuming 
other measures of cardiorespiratory fitness, VO2peak 
may be different if a verification retest is used and the 
ventilatory efficiency slope depends largely on the plot-
ting method [35, 36]. OUEP is an objective measure 
because it is an averaged time interval; thus, OUEP 

seems reliable and should be easier to compare between 
studies [17, 19]. An interesting finding from our study is 
presented on the Figs. 3 and 4 where bias grow simulta-
neously with increasing OUEP [37]. This indicate that 
agreement between measured and estimated OUEP 
could not be constant but varies with fitness level. Per-
haps, prediction of OUEP with a universal equation could 
not be the most valid method. Therefore, it is justified to 
derive the models tailored for particular populations (i.e. 
trained and untrained) [8, 37].

The relationship of OUEP to basic demographic 
parameters such as sex and age remained mostly similar 
between EA and the general population [17]. However, 
findings from our study should be discussed as some 
relationships to other demographic measures with OUEP 
seem to be complex. We highlight the very strong impact 
of sex as reflected by the high β-coefficient (β = 0.54). 
As expected, males had higher OUEP than females. 
Even though our study population was younger (age 
approximately 22.3 ± 4.6 years), OUEP also declined with 
increasing age (β= − 0.048, p = 0.57). This relationship 
was not significant; thus, we do not include age covari-
ate in our models. Our model indicates that OUEP could 
decrease with height (β=–0.257, p = 0.041). Finally, we did 
not find a significant relationship between OUEP and 
other somatic measurements such as body weight, BMI, 
or BSA.

In young people, maximal effort is strongly dependent 
on the motivation to continue effort despite fatigue [38]. 
This does not mean that if CPET was submaximal, it did 
not provide valuable data. OUEP is most often found 
close to the first ventilatory threshold [17]. Our study 
indicates that it is a robust cardiorespiratory verifier, no 
matter whether the maximum effort has been achieved 
or not. Since OUEP is measured during submaximal, not 
peak, exercise, It does not cause strenuous fatigue and is 
safer for clinical purposes or to avoid overtraining [39]. 
OUEP can be repeated frequently and regularly to moni-
tor cardiorespiratory health. What is more, OUEP is eas-
ier to reliably determine because it is calculated from a 
time interval and does not include finding the ventilatory 
threshold which could be affected by interobserver vari-
ability [40, 41].

Limitations
To ensure that our conclusions will be correctly inter-
preted, some points should be raised. We gathered a 
population of high-performance well-trained individu-
als, which is difficult. According to Wasserman & Han-
sen, the predicted VO2peak in our subjects was on 
average 144.5 ± 25.9% [42]. Therefore, we were able to 
conduct external validation on EA. Participants with 
VO2peak > 140% predicted were assigned to ‘very fit’ in 
the original study by Sun et al. [17]. We also emphasize 
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the equal ratio of males to females (55–45%). Therefore, 
the influence of sex is balanced and reliably modelled.

The study group appears to be homogeneous, and in 
the majority consisted of younger Caucasian EA [43]. 
Further studies with a wider age distribution should be 
conducted. Those studies should include both pedi-
atric EA and master EA. CPET was conducted in a 
cycling protocol. The modality of CPET could influence 
the results. In other protocols (e.g. running or rowing) 
there could be some different values [44]. In the origi-
nal derivation study from Sun et al. the participants also 
underwent CPET on the treadmill [17]. CPET results 
are usually slightly higher during running than cycling 
[44]. We stipulate that this should not have wide impact 
on results of our study because OUEP is a ratio of two 
variables. However, this relationship should be verified by 
further researchers. Therefore, we highlight that derived 
models are specified for cycling CPET.

It is worth noting that there is some ambiguity of the 
maximum effort criteria used for studies on EA. Wagener 
et al. suggest that the most appropriate RER for indi-
viduals aged 20–39 is ≥ 1.13 [45]. On the other hand, 
the American Thoracic Society and with American Col-
lege of Chest Physicians recommend a RER of 1.10 [4]. 
Finally, Petek et al. found that the most suitable RER for 
EA equals 1.05 [8]. In our study, we used RER of 1.05 as 
a cutoff (i.e. similar to Petek et al.) because these criteria 
are the latest ones and were provided after consideration 
and evaluation of previous reports [8]. However, if any 
future study will choose other criteria of maximal CPET, 
we underline that the OUEP results could be slightly dif-
ferent. We underline the need to derive further models 
to predict OUEP from other testing modalities and under 
other testing criteria. In summary, all the results should 
be extrapolated carefully.

Clinical implications
Some practical and clinical applications should also be 
discussed. CPET can be performed for sports diagnostics 
to guide training and in a clinical setting when pathology 
is suspected [46, 47]. However, clinicians need a certain 
reference point (i.e., a value or formula to compare with 
directly measured results). Retrospective evaluation of 
achieved OUEP could facilitate the assessment of cardio-
respiratory fitness [17]. Furthermore, the prospective cal-
culation of OUEP enables the setting of the target ranges 
when planning the CPET intensity [17]. Our prediction 
equations are a valuable part of a clinician’s toolbox when 
assessing cardiorespiratory health. However, the pro-
vided equations should not be used to make a definitive 
diagnosis. Nevertheless, the models could be used to 
guide further steps. This study facilitates the implemen-
tation of OUEP among apparently healthy subjects and 
those with suspected CVD.

Future perspectives
Previous studies tested OUEP in predicting the VO2peak 
[38, 48]. Most often there was a weak or limited correla-
tion between OUEP and VO2peak (17, 50). However, in 
our study, both parameters were significantly correlated 
(R = 0.32, p < 0.001). OUEP and VO2peak describe dif-
ferent elements of exercise physiology and complement 
each other but do not replace one another [17, 19]. Future 
research on wider populations should clarify how OUEP 
links with VO2peak. OUEP certainly constitutes an inter-
esting supplement to VO2peak [48]. OUEP is emerging 
as an interesting additional cardiorespiratory variable 
[19]. Future studies should verify whether OUEP remains 
stable in extreme age groups. Therefore, further research 
about OUEP could be conducted on junior and master 
EA. Another unanswered point is whether OUEP has any 
discriminative power when CVD is suspected in EA or 
could help to identify athletes in a state of overtraining.

Conclusions
OUEP remains stable and is only minimally influenced 
by endurance level. It is transferable between untrained 
individuals and EA. OUEP could be modelled in EA with 
basic demographic parameters: height and sex. Predic-
tion equations for OUEP were replicable and provided 
promising, however limited accuracy. Medical profes-
sionals and fitness practitioners should consider OUEP 
when evaluating CPET results to determine cardiorespi-
ratory fitness and monitor training.
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