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Abstract
Background  There are now many different types of activity trackers, including pedometers and accelerometers, to 
estimate step counts per day. Previous research has extensively examined step-count measurements using activity 
trackers across various settings while simultaneously wearing different devices.; however, older adults frequently 
display distinct walking patterns and gait speeds compared to younger adults. This study aimed to compare the 
step-count between older and younger adults by having them simultaneously wear seven different activity trackers in 
free-living experiments.

Methods  This study included 35 younger adults (21–43 yrs) and 57 physically independent older adults (65–91 yrs). 
All participants simultaneously wore one pedometer and six activity trackers: ActiGraph GT3X + Wrist and Hip, Omron 
Active Style Pro HJA-350IT, Panasonic Actimarker, TANITA EZ-064, Yamasa TH-300, and Yamasa AS-200 for seven days. A 
regression equation was also used to assess inter-device compatibility.

Results  When comparing wrist-worn ActiGraph to the six hip-worn activity trackers, the wrist-worn ActiGraph 
consistently recorded step counts over 4,000 steps higher than hip-worn activity trackers in both groups (range, 
3000–5000 steps). Moreover, when comparing the ActiGraph worn on the wrist to that worn on the hip, the 
proportion was higher among older adults compared to younger ones (younger: 131%, older: 180%). The Actimarker 
recorded the highest average step counts among six hip-worn devices, with 8,569 ± 4,881 overall, 9,624 ± 5,177 for 
younger adults, and 7,890 ± 4,562 for older adults. The difference between the hip-worn ActiGraph and Active Style 
Pro was just about 70 steps/day overall. The correlation among all devices demonstrated a very high consistency, 
except for the wrist-worn ActiGraph (r = 0.874–0.978).

Conclusions  Step counts recorded from seven selected consumer-based and research-grade activity trackers 
and one pedometer, except for the wrist-worn ActiGraph. showed a variation of approximately 1700 steps (range, 
1265–2275 steps) steps for both groups, yet maintained a high correlation with each other. These findings will be 
valuable for researchers and clinicians as they compare step counts across different studies or representative surveys 
conducted globally.
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Introduction
Objectively measured daily step counts are among the 
simplest indices of daily physical activity [1]. Currently, 
various types of activity trackers, including traditional 
hip-worn devices, smartphones, and wrist-worn devices, 
are available to evaluate physical activity. These devices 
are categorized based on where they are worn on the 
body and the internal mechanisms used to detect steps, 
such as a spring-suspended lever arm, an accelerometer, 
or a piezoelectric sensor. The mechanisms, accuracy, and 
sources of error for various types of step counters worn 
by individuals in diverse settings, including structured 
laboratories, real-world environments, and simulated 
free-living conditions (such as field tests and treadmill 
exercises with or without controlled gait speed have been 
evaluated using video recording and hand-tally counts 
[2–5]. Additionally, recent studies have examined the 
accuracy and validity of step counts [6–8].

In a study on the differences in step counts obtained 
from multiple activity trackers, we recently reported the 
outcomes of 13 selected consumer-based and research-
grade activity trackers, both under structured conditions 
in a metabolic chamber and during 15-day free-living tri-
als [9]. Step counts obtained from 13 selected consumer-
based and research-grade wearable devices varied within 
approximately 2500 steps for both the standardized day 
and free-living condition trials, even when worn con-
currently by the same individual. Moreover, the wrist-
worn accelerometers counted significantly more steps 
than did the other devices in both trials. Nonetheless, 
their measurements maintained a high correlation in 
the free-living trials. The findings of our previous study, 
which included regression equations, will be valuable for 
researchers, health professionals, and clinicians involved 
in prescribing exercise programs, as they can convert the 
step counts obtained with one device to the step counts 
that would be obtained with the other devices.

Nonetheless, our previous study had limitations in 
terms of the sample size, with only 19 participants; 
additionally, the inclusion criteria were limited to nor-
mal-weight individuals aged between 21 and 50 years. 
Consequently, the generalizability of these findings to the 
general population is limited. Particularly in older adults, 
it is well known that walking patterns and gait speeds 
differ from those of younger adults [10–12]. Moreover, 
previous studies highlighted the underestimation of step 
counts in experimental settings involving slow gait speed 
trials [4, 5, 13].

This study had two primary objectives: (1) to explore 
the variance in step-count measurements among six hip-
worn and one wrist-worn activity trackers in older adults 

relative to younger adults, and (2) to derive equations 
essential for converting step counts from one device to 
another, utilizing standardized major axis analysis.

Methods
Participants
This study included 35 young adults aged 21 to 43 years 
and 57 older adults aged 65 to 91 years who were inde-
pendently living in the community and could walk unas-
sisted (Table  1). The older participants were selected 
from individuals who took part in a physical fitness 
assessment in Kyoto, while the younger participants were 
drawn from current students, alumni, and staff of Kyoto 
University. Prior to the study, the participants provided 
written informed consent after receiving information 
about the procedures and purpose of the study. All the 
procedures were reviewed and approved by our institute 
(no. kenei-198 m). All the participants provided written 
informed consent.

Experimental design
Participants visited the laboratory in the morning after an 
overnight fast of at least 10 h, underwent height, weight, 
and body composition measurements, and were asked 
to live their normal lives for seven days. All participants 
were equipped with seven devices, including six activ-
ity trackers worn on their hip and one pedometer: Acti-
Graph GT3X+ (ActiGraph LLC, Penascola, FL, USA), 
Omron Active Style Pro HJA-350IT (OMRON HEALTH-
CARE, Kyoto, Japan), Panasonic Actimarker EW4800 
(Panasonic, Osaka, Japan), TANITA EZ-064 (TANITA, 
Tokyo, Japan), and Yamasa TH-300 (Yamasa, Tokyo, 
Japan). Of these devices, ActiGraph, Omron Active Style 
Pro HJA-350IT, and Panasonic Actimarker EW4800 are 
research-grade wearable devices [14–16], while TANITA 
EZ-064 and Yamasa TH-300 are consumer-based devices. 
In addition, the participants wore a Yamasa pedometer 
(ALNESS 200  S AS-200, Yamasa Corp., Tokyo, Japan), 
which is based on the response of a spring-mass system 
to gravity. Furthermore, the Yamasa pedometer (interna-
tionally known as Yamax) has been used in the National 
Health and Nutrition Survey conducted by the Ministry 
of Health, Labour and Welfare in Japan since 1989 [17, 
18]. Positioning was randomly chosen for each partici-
pant as appropriate to minimize possible bias owing to 
placement, and each participant placed the devices in the 
same position throughout the experiment. All activity 
trackers, except for the ActiGraph and Yamasa pedom-
eter, were concealed with tape to prevent participants 
from viewing metrics like step counts.

Keywords  Accelerometer, Assessment, Pedometer, Physical activity, Surveillance
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All devices were initialized before the trial and down-
loaded according to the manufacturer’s specifications 
using software provided by the respective companies. 
Before the experiment, the participants’ biometric infor-
mation (such as age, sex, height, and weight) was input, 
with the exception of the Yamasa AS-200 pedometer 
(owing to lack of memory function). Participants wore all 
the devices during their waking hours but were instructed 
not to wear them during water-related physical activities 
or other physical activities during which the devices were 
difficult to wear. All participants were instructed not to 
wear any of the devices during this time. Furthermore, 
participants documented non-wear periods in a diary 
(e.g., bathing, showering) and recorded daily step counts 
using the Yamasa pedometer, which lacked a memory 
function, each evening during the free-living experi-
ments. This diary guided the exclusion of data from seven 
days due to: (1) atypical days (such as travel or illness), 
and (2) unrecorded personal data due to device malfunc-
tions. For instance, if data from the Omron Active Style 
Pro HJA-350IT were absent for a day, we discarded the 
data from all devices for that day, irrespective of whether 
other devices had successfully recorded the data. In addi-
tion, individuals with fewer than 100 steps or over 50,000 
steps were excluded according to the National Health 
and Nutrition Survey in Japan [18]. Data from the initial 
day of activity monitor distribution was excluded from 
analysis for all participants. Ultimately, we analyzed 3073 
datasets from 3864 datasets (92 participants, 6 days, and 
7 devices).

Anthropometry and body composition
Height and body weight were measured on the experi-
mental days. The heights of the participants were then 
objectively measured to the closest 0.1 cm using an ana-
log height meter. Body weight was measured, and appen-
dicular lean mass was estimated using multifrequency 

bioelectrical impedance analysis (MF-BIA) (MC-
780 A-N, TANITA, Tokyo, Japan), which was then vali-
dated using dual-energy X-ray absorptiometry [19]. 
Participants were evaluated in their underwear and were 
asked to stand barefoot on toe-and-heel electrodes while 
holding handgrips, with their arms hanging a few centi-
meters from the hips. The body mass index was calcu-
lated as weight/height2 (kg/m2).

Statistical analyses
Statistical analyses were conducted, and figures were gen-
erated utilizing RStudio software for Mac (R version 4.2.2 
[2022-10-31 ucrt], RStudio, Inc.). This statistical process 
proceeded in two sequential steps as follows.

(1) Comparison analysis: To describe the distribution 
of step counts across all devices, box plots were illus-
trated overall and by age groups. For descriptive statis-
tics, values of continuous variables are expressed as mean 
and standard deviation (SD) or median and interquartile 
range (IQR). One-way analysis of variance (ANOVA) and 
post-hoc multiple comparison tests were conducted to 
analyze significant differences among all devices. Given 
that step counts can be used as an overall index of how 
active a person is [1, 20], the step counts obtained from 
each activity tracker were categorized into the following 
four categories: <5000, 5000 to 7499, 7500 to 9999, and 
≥ 10,000. Moreover, to assess the difference in step counts 
between wrist-worn and hip-worn ActiGraph devices, 
the differences were calculated by subtracting hip-worn 
ActiGraph values from wrist-worn ActiGraph values. 
Subsequently, an unpaired t-test was conducted for the 
young and older groups. To visualize the difference in 
step counts, the “raincloud plot” was used [21].

(2) Association analysis: to examine the relationship 
between the step-count estimates of all devices, Pear-
son correlation coefficients were used based on the data 
distributions of all devices using the “ggpairs” function 

Table 1  Characteristics of participants
Characteristic Overall, N = 921 Young, N = 351 Older, N = 571 p-value2,3

Gender 0.993
Female 50 (54%) 19 (54%) 31 (54%)
Male 42 (46%) 16 (46%) 26 (46%)
Age, yrs 59.2 (25.7) 27.6 (6.4) 78.5 (6.8) < 0.001
Height, cm 160.0 (9.4) 165.0 (9.5) 156.9 (8.0) < 0.001
Weight, kg 54.4 (9.0) 56.6 (9.1) 53.0 (8.8) 0.082
BMI, kg/m2 21.2 (2.5) 20.7 (1.9) 21.5 (2.8) 0.087
Fat mass, kg 12.5 (4.4) 12.3 (4.4) 12.7 (4.4) 0.627
%fat, % 23.0 (7.2) 21.8 (7.5) 23.7 (7.0) 0.245
Fat free mass, kg 41.9 (8.0) 44.3 (9.0) 40.4 (7.1) 0.036
Skeletal muscle mass, kg 39.6 (7.7) 41.9 (8.6) 38.2 (6.7) 0.038
1n (%); Mean (SD)
2Pearson’s Chi-squared test; Wilcoxon rank sum test
3Significantly different older versus younger participants
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of the GGally package. Standardized major axis analyses 
were conducted to derive equations for converting step 
counts obtained with one device to those obtained with 
other devices, instead of using linear regression analyses. 
Standardized major axis analysis is a statistical method 
that accounts for errors in both the x-axis (independent 
variable) and the y-axis (dependent variable), enabling 
the assessment of error components related to both accu-
racy and precision [22, 23].

The figures were produced using the R package 
“ggplot2.” The level of statistical significance was estab-
lished at 0.05.

Results
Table 1 shows the participants’ characteristics, including 
fat mass and skeletal muscle mass. Among all the par-
ticipants in this study, approximately 60% and 40% were 
female and male, respectively, with a similar distribution 
observed among younger and older adults.

Descriptive statistics
The step-count estimates of all devices in the free-liv-
ing, including the median and quartile, are reported 
in Fig.  1; Table  2 and supplementary Table 1. The step 
count obtained by the ActiGraph worn on the wrist 
was the highest among the seven devices, and this 
result was consistent for both younger and older adults. 
Among six hip-worn devices, excluded ActiGraph 
wrist-worn, the Panasonic Actimarker EW4800 with 

Fig. 1  Box plots showing the daily number of steps completed during the 6-day free-living trial for seven activity trackers. Each box represents the inter-
quartile range (IQR) of steps for the device, with the central notch indicating the median. Whiskers extend from the box to show the range of the data, 
excluding outliers. Dashed lines across the boxplots represent the mean number of steps recorded for each device
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a triaxial accelerometer was the highest value overall, 
registering 8,569 ± 4,881 steps/day (mean ± SD). More-
over, the Panasonic Actimarker EW4800 was high-
est in both age groups among six hip-worn, recording 
an average of 9,624 ± 5,177 steps/day in younger adults 
and 7,890 ± 4,562 steps/day in older adults. Conversely, 
the Yamasa AS-200 pedometer, which is based on the 
response of a spring-mass system to gravity, showed the 
lowest overall step count among the devices (6,442 ± 4,24 
steps/day), ranking second to last in younger adults 
(7,517 ± 4,388 steps/day) and recording the lowest count 
in older adults (5,750 ± 4,015 steps/day). In the compari-
son between the hip-worn ActiGraph and the Omron 
Active Style Pro HJA-350IT, both of which are research-
grade models, the average number of steps per day was 
roughly the same for both younger and older adults. 
Regarding TANITA EZ-064 and Yamasa TH-300, which 

are activity trackers of consumer-based, the number 
of steps obtained by Yamasa was higher than that of 
TANITA among the overall, younger, and older adults. 
With regard to the step count categories, the wrist-worn 
ActiGraph categorized approximately 60% into the cat-
egory of 10,000 steps or more in overall (Supplementary 
Table 2).

Our findings additionally reveal a more pronounced 
disparity in step counts between the hip and wrist among 
older adults compared to their younger adults. To be spe-
cific, our results demonstrate that wrist-worn ActiGraph 
devices record 131% more steps (an additional 2493 
steps) than hip-worn ActiGraph in the case of younger 
adults (Fig. 2; Table 2). Conversely, for older adults, wrist-
worn ActiGraph devices register a 180% increase (equiv-
alent to 5472 additional steps) compared to hip-worn. 
The difference in ActiGraph step counts between the hip 
and wrist was significantly larger in older adults than in 
younger adults (p < 0.001).

Correlations of all devices
Figure 3 displays a paired scatterplot matrix created with 
the “ggpairs” function from the GGally package. It visual-
izes the correlation between step counts obtained from 
seven different devices, with the lower section show-
ing scatter plots, the diagonal section showing distribu-
tions, and the upper section indicating correlations. In 
this scatterplot matrix, the slopes of the regression lines 
in the corresponding plots generally indicated a strong 
correlation, except for the wrist-worn ActiGraph (range 
of correlation in wrist-worn ActiGraph in overall; 0.647–
0.738). The regression equations between the wrist-worn 
ActiGraph and hip-worn all devices differ between older 
and younger adults, however, the regression equations 
for the six hip-worn devices closely matched each other 
between younger and older adults, except for spring-
mass pedometer (r range, 0.87–0.99, Fig.  1). Whereas, 
some values deviated significantly from the relationship 
in the case between the spring-mass pedometer and 
other devices (r range, 0.73–0.83).

Table 2  Daily number of steps completed during the 6-day free-living trial
Group ActiGraph.W ActiGraph.H Omron Panasonic Tanita Yamasa.A Yamasa.P p-value#

Overall 11,539 ± 4,334
[11,058, 
8,331 − 14,155]

7,234 ± 4,291
[6,504, 3,923-9,662]

7,304 ± 4,562
[6,519, 
4,020 − 9,631]

8,569 ± 4,881
[7,927, 
4,900 − 11,263]

6,294 ± 4,327
[5,360, 
3,057 − 8,836]

6,963 ± 4,440
[6,008, 
3,774-9,496]

6,442 ± 4,249
[5,800, 
3,189-8,439]

< 0.001

Young 10,347 ± 4,294
[9,747, 7,175 − 12,715]

7,854 ± 4,383 [7,242, 
4,495 − 10,437]

8,319 ± 4,683
[7,342, 
5,059 − 10,972]

9,624 ± 5,177
[8,810, 
5,903 − 12,589]

6,949 ± 4,396
[5,944, 
3,657-9,275]

7,598 ± 4,564
[6,527, 
4,382 − 10,601]

7,517 ± 4,388
[7,182, 
4,356-9,795]

< 0.001

Older 12,307 ± 4,192
[11,602, 
9,598 − 14,697]

6,835 ± 4,191 [6,004, 
3,778-8,815]

6,651 ± 4,368
[5,650, 
3,542-8,961]

7,890 ± 4,562
[7,323, 
4,277 − 10,489]

5,872 ± 4,237
[4,933, 
2,738-8,066]

6,554 ± 4,317
[5,562, 
3,272-8,987]

5,750 ± 4,015
[5,021, 
2,698-7,662]

< 0.001

Mean ± standard deviation [Median, 25-75%]
# Kruskal-Wallis rank sum test

Table 3  Standardized major-axis regression between the step-
count estimations of all the devices, free-living trial
Model Regression Equation
Yamasa.P ~ Yamasa.A y = 0.85x + 501
Yamasa.P ~ Tanita y = 0.86x + 1043
Yamasa.P ~ Panasonic y = 0.77x − 181
Yamasa.P ~ Omron y = 0.82x + 441
Yamasa.P ~ ActiGraph.H y = 0.88x + 58
Yamasa.P ~ ActiGraph.W y = 0.63x − 873
Yamasa.A ~ Tanita y = 1.00x + 649
Yamasa.A ~ Panasonic y = 0.86x − 440
Yamasa.A ~ Omron y = 0.93x + 151
Yamasa.A ~ ActiGraph.H y = 1.01x − 359
Yamasa.A ~ ActiGraph.W y = 0.73x − 1469
Tanita ~ Panasonic y = 0.81x − 668
Tanita ~ Omron y = 0.90x − 251
Tanita ~ ActiGraph.H y = 0.98x − 809
Tanita ~ ActiGraph.W y = 0.68x − 1550
Panasonic ~ Omron y = 1.00x + 1256
Panasonic ~ ActiGraph.H y = 1.07x + 803
Panasonic ~ ActiGraph.W y = 0.80x − 668
Omron ~ ActiGraph.H y = 1.01x − 37
Omron ~ ActiGraph.W y = 0.73x − 1171
ActiGraph.H ~ ActiGraph.W y = 0.73x − 1196
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Standardized major-axis regression
The regression equations for converting the step counts 
obtained from all the devices using standardized major-
axis regression are listed in Table 3.

Discussion
The main findings of the present study were as fol-
lows: (1) Wrist-worn ActiGraph GT3X devices tended 
to record higher step counts than did hip-worn activity 
trackers in free-living experiments among both young 
and older adults (range, 3000–5000 steps), with low cor-
relations observed between the other devices (r range, 
0.647–0.738); and (2) the mean step counts from the six 
hip-worn devices showed a variation of approximately 
1700 steps (range, 1265–2275 steps), but most of these 

devices showed strong correlations among both young 
and older adults.

To the best of our knowledge, this study is the first to 
explore the differences and associations in step counts 
across seven selected consumer and research-grade 
wearables during 6-day free-living trials, involving both 
younger and older adults. However, the current study has 
a major limitation. We lacked criterion or gold standard 
measurements, like the actual number of steps deter-
mined through visual observation (e.g., video recording, 
hand-tally count), or the use of devices like StepWatch 
worn on the ankle [2, 8, 24]. Therefore, this study was 
unable to compare step counts with a criterion or gold 
standard measurements gold standard; instead, it solely 
presents the correlations among different devices. In the 
research-grade model in our study, the ActiGraph is one 

Fig. 2  A raincloud plot illustrating the difference values between wrist-worn and hip-worn ActiGraph. This plot combines boxplot and ridgeline (density) 
plots. The centreline in the box represents the median, the lower hinge represents 25% quantile, and the upper hinge indicates 75% quantile. The dash 
lines represent the mean difference values of young and older, respectively
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of the most widely used accelerometer brands worldwide, 
and the Omron Active Style Pro HJA-350IT is especially 
popular in Japan. However, we recognize a significant 
limitation in our study due to the lack of reference or 
gold standard measurements and emphasize the neces-
sity for further research using these standards. We have 
discussed the differences and associations of step counts 
between devices here.

First, we will discuss the difference in step counts 
between wrist-worn and hip-worn activity trackers. 
Wrist-worn accelerometers are increasingly being used 
as an objective measure of physical activity in various 
research surveys, in addition to traditional hip-worn 
devices. However, previous studies have reported that 
the step counts of wrist-worn activities were higher than 
those of hip-worn activities [25, 26]. For example, Gall 

et al. conducted a meta-analysis and found that wrist-
worn activity trackers recorded an average of 3,537 more 
steps per day than hip-worn trackers in both young and 
older adults, across a total of 19 studies [25]. In addition, 
Mandigout et al. demonstrated that wearing the Acti-
Graph GT3X on the wrist may lead to overestimated step 
counts compared with the same ActiGraph model placed 
on the hip in 22 young and 22 older adults (mean ± SD: 
age, 27.2 ± 6.2 years and 76.6 ± 4.7 years, respectively) in 
free-living conditions [27]. Furthermore, the mean dif-
ference in step counts was 4,337 steps overall (wrist-
worn: 11,203 ± 4,543; hip-worn: 6,866 ± 4,655), with the 
difference between wrist-worn and hip-worn devices 
being larger in older adults than in younger ones [27]. 
Additionally, Toth et al. [28] conducted a systematic lit-
erature review in adults aged 18 years or older, revealing 

Fig. 3  Paired scatterplot matrix of step-count estimates from all devices during free-living trials (lower section; scatter plots, diagonal section; distribu-
tions of each activity trackers, upper section; Pearson’s correlation coefficient and significant deference). In the upper section, the Gray color represents 
the correlation of Overall (Younger and Older), the red color means younger, and green means older adults. Corr, correlation coefficient. ***, Significant 
at P < 0.001
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a difference in step counts between the hip and wrist, 
especially highlighting the distinction between older and 
younger adults. The study reports that, in comparison 
to younger adults (showing a 140% capture, equivalent 
to 2795 more steps with wrist-worn monitors than hip-
worn monitors), older adults exhibit a more pronounced 
contrast with a 189% capture (translating to 4360 more 
steps with wrist-worn monitors than hip-worn monitors) 
[28]. This difference can likely be attributed to activities 
that require movement of hands and wrists with little 
or no movement of the legs or feet, such as eating, desk 
work, and folding laundry [29]. Our results are consis-
tent with those of previous studies, indicating that wrist-
worn ActiGraph devices consistently registered higher 
step counts than did hip-worn activity trackers in free-
living experiments involving both young and older adults 
(Fig. 2). Additionally, it was observed that the difference 
in step counts between the wrist and hip was more pro-
nounced among older adults compared to their younger 
counterparts, and the regression equations for younger 
and older adults differed. During NHANES 2003–2006, 
ActiGraph devices (AM-7164) worn on the hip were used 
to investigate physical activity, including step count [30]. 
However, in NHANES 2011–2014, this protocol was 
changed, and participants were directed to wear the Acti-
Graph GT3X + on their wrist [31]. Direct comparison is 
challenging as both the location and the models of the 
devices differ; however, our results may help adjust step 
counts from both hip- and wrist-worn ActiGraph devices 
through regression equations.

Second, our study demonstrated that the mean step 
counts from the six hip-worn devices showed a maximum 
variation of approximately 1700 steps (range, 1265–2275 
steps). In our study, both older and younger participants 
recorded higher step counts using the Panasonic Acti-
marker compared to other devices, while the YAMASA 
pedometer and TANITA device consistently showed 
lower step counts. Furthermore, the difference between 
the hip-worn ActiGraph and Active Style Pro was just 
about 70 steps/day overall. These results are similar to 
our previous study [9], which showed that step count 
by Panasonic Actimarker was almost 1500 steps higher 
than YAMASA and TANITA in free-living trial. Regard-
ing the variations in daily step counts between devices, 
the differences may be due to a random-movement filter 
function that only counts steps when continuous walk-
ing is detected [32]. Notably, regarding the filter func-
tion of the activity trackers, the Omron HJ-720ITC, for 
example, employs a criterion that counts minimal steps 
within a 4-second interval [33]. Furthermore, the con-
sumer-oriented devices (TANITA and YAMASA) feature 
proprietary filters with similar functions. Specifically, 
the TANITA device uses a mechanism to mitigate mea-
surement errors by distinguishing the onset of walking 

(descending from each company’s website). If sustained 
motion persists for a duration of 7 s or more, the device 
categorizes it as walking and promptly presents aggre-
gated measurement values up to that point. Addition-
ally, after the cessation of motion, fresh measurements 
were not logged unless another continuous motion event 
of 7  s or longer occurred. In contrast, with the Yamasa 
device, steps were not counted within the initial 10 steps 
from the commencement of walking to avoid registering 
vibrations caused by placing the device in a pocket, bag, 
or other non-walking vibrations. In the event of uninter-
rupted walking, the total step counts up to that moment 
was immediately displayed. Therefore, activities that 
do not involve continuous walking, such as brief move-
ments covering only a few steps, wolud be excluded from 
step counting. The observed discrepancy could result 
in notable differences in step counts when compared to 
those obtained from other devices, as it might exclude 
the accumulation of certain activities. Nevertheless, a 
high correlation was noted among all hip-worn devices, 
as indicated by a correlation coefficient varying between 
approximately 0.88 and 0.98 for both older and younger 
groups (Fig. 2).

Practical application
Steps are an essential unit of locomotion, and objectively 
tracking daily step counts represents one of the simplest 
and most direct methods to quantify daily physical activ-
ity [1]. There are currently many different types of activity 
trackers including smartphones and wrist-worn activity 
trackers to evaluate physical activity including step count 
over the 3 last decades [34]. However, our study empha-
sizes the importance of considering the specific types of 
activity monitoring devices used when comparing physi-
cal activity across studies, including step counts. Omron 
Active Style Pro HJA-350IT and Panasonic activity track-
ers, which are research-grade devices, have been widely 
used among many types of Japanese studies to evaluate 
physical activity, and sedentary behavior [15, 35–38]. 
Furthermore, NHNS in Japan continuously evaluated the 
step counts using a YAMASA pedometer from 1989 [18]. 
Contrastingly, ActiGraph stands out as a widely acknowl-
edged activity monitor, employed not only in national 
surveillance programs like NHANES in the United States 
[31, 39, 40] and the Canadian Health Measures Survey 
in Canada [41] but also commanding significant atten-
tion globally. Although different devices have been used 
in national surveillance, there is a possibility of approxi-
mating conversions through regression equations. Stan-
dardized major-axis regression, as shown in Table 3, may 
assist in the comparison of step counts across various 
studies or representative surveys conducted in different 
countries using various activity trackers.
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Second, given the consistent finding of higher step 
counts from wrist-worn devices, researchers, clinicians, 
and users of pedometers and accelerometers should con-
sider the implications for interpreting physical activity 
levels, associations with health-related outcomes such 
as mortality, and potential bias in results due to misclas-
sification. For example, in their systematic review and 
meta-analysis, Cavero-Redondo et al. focused on exam-
ining the relationship between daily step counts and arte-
rial stiffness, as measured by pulse wave velocity (PWv), 
a reference standard. Their subgroup analysis by device 
type revealed a stronger association between daily steps 
and PWv in studies utilizing pedometers. Although they 
partly attributed these results to discrepancies in step 
estimation methods among different brands and models 
of accelerometers, they also suggested that differences 
in attachment sites could be a more plausible explana-
tion [42]. Our findings, including standardized major axis 
analysis, could assist researchers and health profession-
als in interpreting how step counts from various activity 
trackers correlate with health outcomes. For example, 
based on step counts assessed at the wrist, there is a pos-
sibility of discrepancies where individuals classified as 
“Active” might be classified as " Somewhat active” when 
assessed at the waist. These findings may also inform 
the prescription of exercise programs and interventions 
aimed at achieving specific step-count targets to improve 
population health and physical activity levels. Given the 
emphasis on the types of activity monitors and attach-
ment sites, additional cohort studies are required to 
investigate the relationship between health outcomes and 
variations in attachment sites.

However, our study has several limitations. First, the 
participants in our study were not randomly selected 
from the city, potentially introducing a selection as they 
may have been more health-conscious than the general 
population. Second, the study sample size was small, 
consisting of 35 young adults aged 21 to 43 years and 57 
older adults aged 65 to 91 years, and restricted to indi-
viduals with a normal BMI (mean and SD: young adults 
20.7 ± 1.9, older adults 21.5 ± 2.8), limiting the gener-
alizability of our results to the general population. Fur-
thermore, all the older adults in our study were living 
independently in the community and able to walk unas-
sisted. Therefore, further research should focus on other 
populations, including individuals with obesity or lim-
ited mobility, as well as those residing in assisted living 
facilities, to generalize the findings of this study. Finally, 
we lacked structured laboratory data for all participants, 
such as treadmill walking at controlled speeds or stan-
dardized protocols in a metabolic chamber. Thus, future 
studies should compare step counts under standard-
ized experimental conditions, ensuring consistency in 

physical activity details and time spent on each activity 
across all participants.

Conclusion
Step counts obtained from seven selected consumer-
based and research-grade wearable devices varied within 
approximately 1700 steps under free-living condition tri-
als but were still highly correlated with each other, except 
for the ActiGraph wrist. These results will be useful to 
researchers and clinicians facilitating the comparison of 
step counts across various studies or representative sur-
veys conducted in different countries.
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