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low-active adults with and without
cognitive impairment
Liam McAuliffe1, Gaynor C. Parfitt1, Roger G. Eston1, Caitlin Gray1, Hannah A. D. Keage2 and Ashleigh E. Smith1,2*

Abstract

Background: Exercise adherence in already low-active older adults with and without mild cognitive impairment
(MCI) remains low. Perceptual regulation and exergaming may facilitate future exercise behaviour by improving the
affective experience, however evidence that this population can perceptually regulate is lacking. To explore this, we
investigated 1) perceptual regulation of exercise intensity during either exergaming or regular ergometer cycling
and 2) explored affective responses.

Methods: Thirty-two low active older adults (73.9 ± 7.3 years, n = 16, 8 females) with or without MCI (70.9 ± 5.5 years,
n = 16, 11 females) participated in a sub-maximal fitness assessment to determine ventilatory threshold (VT) and two
experimental sessions (counterbalanced: exergaming or regular ergometer cycling). Experimental sessions consisted
21-min of continuous cycling with 7-min at each: RPE 9, 11 and 13. Oxygen consumption (VO2), heart rate (HR), and
affect (Feeling Scale) were obtained throughout the exercise.

Results: VO2 (p < 0.01) and HR (p < 0.01) increased linearly with RPE, but were not significantly different between
exercise modes or cognitive groups. At RPE 13, participants worked above VT in both modes (exergaming:
115.7 ± 27.3; non-exergaming 114.1 ± 24.3 VO2 (%VT)). Regardless of cognitive group, affect declined significantly
as RPE increased (p < 0.01). However on average, affect remained pleasant throughout and did not differ
between exercise modes or cognitive groups.

Conclusions: These results suggest low-active older adults can perceptually regulate exercise intensity, regardless of
cognition or mode. At RPE 13, participants regulated above VT, at an intensity that improves cardiorespiratory fitness
long-term, and affect remained positive in the majority of participants, which may support long-term physical activity
adherence.
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Background
Australian physical activity (PA) guidelines indicate that
as few as one in three older men and one in five older
women (> 65 years) are considered sufficiently active
(achieving at least 150 min moderate intensity activity

per week) [1, 2]. In this population, regular PA may not
only be preventative against cognitive decline and reduce
the risk of future cognitive impairment [3–5], but might
also slow the progression of an existing mild cognitive
impairment (MCI) to dementia [6–8]. Despite this, one
of the biggest challenges is engaging low-active older
adults, both with and without cognitive impairment, in
regular and sustainable PA. Evidence from one study
demonstrates only 53% of older adults living with MCI
adhere to a six month traditionally prescribed, moderate
intensity exercise program; and as few as 25% maintain
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sufficient PA, six months after completion [9]. Taken to-
gether, these findings suggest traditional, moderate in-
tensity exercise prescription approaches do not translate
to long-term adherence, in this population. Therefore,
new and novel exercise prescription approaches are
needed to combat both physical inactivity and age-
related cognitive decline.
One method of exercise prescription increasingly

recognised as an effective way to promote long-term ad-
herence is perceptual regulation of the exercise intensity
[10]. Rather than an externally controlled intensity, such
as percentage of age-predicted maximal heart rate
(%HRmax), participants use effort perception (with the
Borg 6–20 Rating of Perceived Exertion (RPE) Scale)
and their internal framework to individually set the in-
tensity [11]. At any point throughout the exercise, par-
ticipants can increase or decrease their output to
maintain the desired effort perception. When percep-
tually regulating at different RPEs, participants work at
discretely different intensities with high repeatability and
reliability [10, 12, 13]. Additionally, the process of per-
ceptual regulation has been linked to increased exercise
adherence [10]. It is likely, that the autonomy present
when perceptually regulating, and the acute affective
(pleasant/unpleasant) responses during exercise, under-
pin the increased adherence [14]. A growing body of evi-
dence shows promise for the use of perceptual
regulation in sedentary adults [15], clinical populations
[16, 17] and sufficiently active older adults [18]. Prelim-
inary evidence in active older adults with no cardiovas-
cular disease risk factors other than age, supports the
use of RPE and perceptual regulation during a fitness as-
sessment to accurately predict cardiorespiratory fitness
[18]. However, there is no current evidence for the use
of RPE to regulate exercise intensity in low-active older
adults, or those living with MCI, and indeed many clini-
cians and care workers indicate at least anecdotally, that
low-active older adults and people with MCI do not
understand how to regulate their exercise intensity using
the RPE scale.
Another emerging exercise modality that may support

long-term adherence is exergaming [19]. Exergaming
combines physical exercise with a computer-simulated
interactive game. Studies report greater improvements
in cognitive outcomes (including executive function)
occur following a three month exergaming intervention,
compared to traditionally prescribed exercise in adults
with MCI [20]. Interestingly participants who used exer-
gaming also anecdotally reported increased enjoyment
during exercise [20], which may support future adher-
ence to the intervention. A systematic review of the lit-
erature further demonstrates increased physical and
cognitive benefits of exergaming in older adults, com-
pared to traditional exercise interventions [21]. Together

these studies provide support for exergaming as an ef-
fective approach for exercise prescription in older low-
active adults, with and without MCI.
Two models may partially explain the increased enjoy-

ment with the use of exergaming: Ekkekakis’s [22] dual-
mode model and Tenenbaum’s social cognitive theory of
perceived and sustained effort [23]. Whilst not the same,
both models propose a link between awareness of in-
ternal (physiological) sensations during exercise and
affective responses, with a negative shift as the intensity
increases. The dual-mode model [22], proposes affective
responses are largely guided by cognitive processes and
are uniformly positive at low intensities [22, 24]. How-
ever, as the intensity of exercise increases beyond a point
of physiological steady state (defined as the ventilatory
threshold (VT)), physiological cues dominate, and this is
associated with a homogenous unpleasant response [25,
26]. Exergaming, at intensities around VT, may distract
from unpleasant (physiological) sensations and lead to
more pleasant affective responses and higher exercise
outputs, particularly if perceptually regulating.
Therefore this study had two overarching aims. Firstly,

we aimed to investigate if low-active older adults with
and without MCI were able to perceptually-regulate
their exercise intensity at three submaximal intensities
(relative to RPE 9-very light, RPE 11-light and RPE 13-
somewhat hard) during exergaming or non-exergaming.
We hypothesised 1) that older adults, regardless of their
cognitive ability, will be able to perceptually regulate ex-
ercise at the three intensities. and 2) exergaming mode
will be associated with higher work rates compared to
standard ergometer cycling. Similar to studies in other
populations [10, 26], we also hypothesised 3) that work
rate selected at RPE 13 will be around known physio-
logical thresholds (VT);
Additionally, we aimed to investigate affective re-

sponses across the duration of the exercise sessions. We
hypothesised 4) that affective responses will remain
pleasant across each submaximal intensity but less at
RPE 13 compared to RPE 9 and 11 and 5) the exergam-
ing condition will be associated with more pleasant
affective responses at each intensity compared to non-
exergaming.
These findings will provide the first evidence for the

combined use of perceptual regulation and exergaming
in this at-risk population.

Method
Participants
Thirty-two insufficiently active older adults provided in-
formed written consent and participated in the study
(Table 1). Eligibility for participation was determined by
self-reporting less than 150 min of moderate intensity
PA per week [1]. Recruitment occurred through local
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newspaper advertisements targeting low-active older
adults who were concerned about their memory. All ex-
perimental procedures were approved by the University
of South Australia’s human research ethics committee
and were performed in accordance with the ethical stan-
dards laid down in the Declaration of Helsinki.
Scores from the Addenbrooke Cognitive Exam (ACE-

III) were used to dichotomise participants into groups
using a previously reported clinical cut-off [27–29] (ap-
parently healthy (score ≥ 88/100) or MCI (score < 88)).

Experimental protocol
Participants attended the laboratory on three separate
occasions within a four-week period (once for a screen-
ing session and twice for the experimental sessions).

Screening session: Session 1
Initially, height, mass, percent body fat (Tanita BF-
679 W bioelectric impedance analysis scale; Tanita Cor-
poration, Tokyo, Japan), blood pressure and resting heart
rate (Dinamap Pro 100 automated sphygmomanometer),
fasted total and high density cholesterol, and blood glu-
cose (CardioCheck PA Point-of-Care Device, Indianapo-
lis, IN) were measured. Participants were then served a
standardised breakfast of toast and cereal.
Following familiarisation with the Borg 6 to 20 Scale

and the Feeling Scale (used to assess affective responses),

participants completed an experimenter-controlled sub-
maximal exercise test on a recumbent ergometer (Lode
Corival Recumbent, Groningen, The Netherlands) to as-
sess cardiorespiratory fitness and determine VT.
Oxygen uptake (VO2) was measured continuously via

a breath-by-breath automatic gas exchange system (Cor-
tex MetaAnalyzer 3B, Biophysik, and Cortex Metasoft
3.1 software, Leipzig, Germany). Heart rate was continu-
ously monitored using a wireless chest strap telemetry
system (Polar Electro T31, Kempele, Finland).
The exercise test began with a 2-min warm up and fa-

miliarisation. Participants were instructed to cycle be-
tween 60 and 70 rpm. The test began at 15 W or 25 W
and increased in either 15 W or 25 W increments each
minute. The minute-by-minute incremental increases in
resistance (either 15 W or 25 W) were determined by
the sex of the participants and self-perceived fitness
levels, with the aim of achieving test completion be-
tween 5 and 12 min of exercise. Individual RPE and
affect were obtained each minute, and the test was ter-
minated when participants reported an RPE of 15.

Experimental sessions: Session 2 and 3:
The order of the experimental sessions were randomised
and counterbalanced so half of the participants received
the exergaming session first and half the non-
exergaming.
Both the Feeling Scale and the Borg 6–20 RPE Scale

were displayed in front of the participants. Participants
were asked to report affect and RPE prior to exercise,
every two minutes for the entire duration of the test and
immediately following exercise completion. Heart rate
and VO2 were recoded continuously throughout the
duration of the exercise session.
Session two and three, commenced with a brief 2-min

warm up on the Expresso HD Recumbent Bike. Partici-
pants were then instructed to cycle for 21 continuous
minutes, consisting of seven minutes at RPE 9 (equiva-
lent to a ‘very light’ intensity), seven minutes at RPE 11
(equivalent to a ‘light’ intensity) and seven minutes at
RPE 13 (equivalent to a ‘some-what hard’ intensity) ei-
ther using the ‘Track mode’ of the Expresso bike (exer-
gaming) or with the screen blocked (non-exergaming).
The exergaming session required the participants to

cycle and steer their “avatar” around a pre-defined track
steering with the steering levers attached to the side of
the seat, while maintaining the targeted exercise output.
During the control session the screen was blocked out
and participants were not required to steer, but the same
cycle ergometer was used. All outputs were concealed
from the participants during the testing.
Throughout each exercise session, participants were

reminded they could change resistance, or cycling ca-
dence at any point to maintain the required exercise

Table 1 Participant characteristics

MCI Apparently healthy

Participants 16 16

Males 8 5

Females 8 11

Age (years) 74.13 ± 7.44 70.88 ± 5.29

Height (cm) 164.8 ± 9.6 164.2 ± 7.8

Weight (kg) 68.56 ± 9.32 70.30 ± 15.17

BMI(kg/m2) 25.26 ± 2.02 26.11 ± 4.17

Resting pulse (bpm) 69.6 ± 10.7 71.41 ± 9.0

Age predicted HR max (bpm) 155.1 ± 5.2 157.4 ± 3.7

Predicted VO2 max (ml/min/kg) 26.5 ± 5.5 25.58 ± 6.2

Systolic blood pressure (mm/hg) 145.7 ± 20.2 134.0 ± 16.8

Diastolic blood pressure (mm/hg) 74.4 ± 9.0 70.1 ± 9.1

Body fat (%) 30.0 ± 7.8 34.2 ± 7.0

Fasting glucose (mmol/l) 4.04 ± 1.36 3.66 ± 0.76

High density lipids 1.43 ± 0.49 1.32 ± 0.38

Total cholesterol 4.39 ± 1.16 4.69 ± 0.98

VO2 at VT (ml/min/kg) 12.8 ± 2.3 12.2 ± 2.5

Heart rate at VT (bpm) 97.3 ± 9.3 97.1 ± 10.5

ACE-III score mean 81.7 ± 4.2* 92.5 ± 3.8*

ACE-III score median (range) 83 (75–87) 91 (88–99)

*P < 0.05 between cognitive groups
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intensity. A continuous 21-min exercise duration was
chosen so that seven minutes could be spent at each
intensity, which allowed for multiple measurements at
each intensity and replicated a standard aerobic
session.

Prediction of fitness and determination of ventilatory
threshold
To predict cardiorespiratory fitness levels, VO2 was col-
lated from the final 30 s of each minute from the sub-
maximal exercise test and extrapolated with HR using
linear regression to an age-predicted HR max (obtained
from Tanaka [30] equation, 208–0.7*age). The VT was
individually determined using a triangulation of the
modified v-slope, ventilatory equivalents (VE) and excess
CO2 methods previously described by Gaskill and col-
leagues [31]. For the v-slope method, VT was identified
as the point at which there was a disproportionate in-
crease in VCO2 compared to VO2. For the VE method,
VT was identified as the exercise intensity correspond-
ing to the first sustained disproportionate increase in
VE/VO2 with no increase in VE/VCO2. For the excess
CO2 method, VT was identified as the exercise intensity
corresponding to an increase in excess CO2 from steady
state. The three methods were graphed separately for
each participant and VT identified by two independent
raters (LM and AS). If there was a disagreement on the
location of the VT, the data were independently assessed
by a third rater (GP or CG). For all subsequent analyses,
VO2 was expressed relative to VT and all HR data as a
percentage of age-predicted HRmax [30].

Statistical analysis
To investigate if older low-active adults could regulate
exercise intensity using perceptual regulation (hypoth-
esis 1 and 2) physiological variables (VO2 and HR)
were analysed with separate three-way analysis of var-
iances (ANOVAs). Within subject factors were mode
(2 levels: exergaming or non-exergaming) and inten-
sity (3 levels: RPE 9, 11 and 13). The between sub-
jects factor was cognitive group (2 levels: Apparently
healthy or MCI). To ascertain if work rate at RPE 13
was around VT (hypothesis 3) a one-way ANOVA
was conducted to compare VO2 at VT from the sub-
maximal graded exercise test to the average of VO2

during the final minute of RPE 13 (minute 20) of
both the exergaming and non-exergaming modes. To
explore the stabilisation of physiological responses
(VO2 and HR) within each of the three submaximal
intensities, the coefficient of variations were obtained
for each intensity by averaging the VO2 (last 30 s) in
two-minute blocks at each exercise intensity and then
obtaining a ratio of standard deviation to the mean,
expressed as a percentage. Coefficient of variations

were also analysed with three-way ANOVA. Within
subject factors were mode (2 levels: exergaming or
non-exergaming) and intensity (3 levels: RPE 9, 11
and 13) and the between subjects factor was cognitive
group (2 levels: Apparently healthy or MCI).
Affective responses (Feeling scale) were also analysed

with a three-way ANOVA (hypothesis 4 and 5). Within
subject factors were mode (2 levels: exergaming or non-
exergaming) and intensity (3 levels: RPE 9, 11 and 13).
The between subjects factor was cognitive group (2
levels: Apparently healthy or MCI).
Post Hoc tests with Bonferroni correction were con-

ducted on all significant main effects or interactions.
Normal distribution and homogeneity of variance of the
data were assessed using the Kolmogorov-Smirnov test
and Levene’s statistic, respectively. Effect sizes are pre-
sented as Eta squared (η2) [32]. In ANOVAs where as-
sumptions of sphericity were violated, the critical value
of F was adjusted using the Greenhouse-Geisser epsilon
value. All data were analysed using the Statistical Pack-
age for Social Sciences (SPSS) version 22 software.

Results
Thirty-one participants completed both non-
exergaming and exergaming sessions, while one par-
ticipant (apparently healthy group) was excluded for
changes to their medication during the study. Three
participants (1 apparently healthy, 2 MCI) did not
have valid fitness data to predict VT or fitness, and
this is reflected in the difference in the degrees of
freedom for specific analyses. Sixteen participants
scored equal to or below the clinical threshold of 88/
100 on the ACE-III.
Table 1, illustrates the mean descriptive participant

characteristics between the cognitive groups. There were
no differences in age, predicted cardiorespiratory fitness
or VT. However, as expected ACE-III score was lower in
the MCI group (t [30]= − 7.984, P < 0.001).

Physiological evidence consistent with the use of
perceptual regulation
In support of hypothesis 1, there was a step-wise in-
crease in VO2 at each RPE (F [2, 52] = 71.00, P < 0.001,
η2 = 0.52; Fig. 1a and b) but no other main effects of
mode (hypothesis 2), cognitive group or interactions
with mode or cognitive group. Similarly, there was a
step-wise increase in HR at each RPE (F [1.3, 40.18] =
94.27, P < 0.01, η2 = 0.55, Fig. 1c and d) and no other
main effects or interactions.

Physiological evidence of working above ventilatory
threshold at RPE 13
At RPE 13 (hypothesis 3), VO2 was significantly higher in
the exergaming mode, compared to the VO2 at RPE 13 in
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the submaximal exercise test and the non-exergaming
mode (F[2,54] = 4.10, P = 0.02, η2 = 0.13). There was no
significant difference between VO2 at VT in minute
20 of the non-exergaming and the VO2 at VT in the
submaximal exercise test (P = 0.14).
The coefficient of variation analysis of physiological

variables (VO2 and HR) revealed no main effects for in-
tensity, mode, cognitive group or interactions (Table 2).

Affective responses during perceptual regulation
For affect (hypothesis 4 and 5) there was a main effect
of intensity (F[2, 58] = 38.15, P < 0.001, η2 = 0.28, Fig. 2),
but no other main effects or interactions for mode or
cognitive group. Affect declined from RPE 9 to RPE 11
(P = 0.002) and RPE 11 to RPE 13 (P < 0.001). Despite
this, the mean group affective responses remained pleas-
ant each: RPE 9, RPE 11 and RPE 13 (Table 3). Dur-
ing the final time point of each RPE level, a small
proportion of participants reported below neutral re-
sponses (Table 3).

Discussion
This study provides the first evidence that low-active
older adults, regardless of MCI, are able to perceptually

regulate their exercise intensity at three submaximal
levels (RPE 9, 11 and 13). In line with other research
[26], participants choose an intensity around their indi-
vidual VT at RPE 11 and RPE 13, which can improve fit-
ness long-term [10, 33]. Additionally, for the majority of
participants, affective responses remained pleasant
throughout. Unexpectedly, with the added stimulus of
exergaming compared to non-exergaming we showed no
differences in work rate or affect. Together these

Fig. 1 VO2 (a and b) and HR data (c and d) during 21 min of non-exergaming (open symbols) and exergaming (coloured symbols) in the MCI group
(a and c) and the apparently healthy group (b and d). VO2 (% VT) and HR (% HRmax) increased with each RPE level. There were no differences in either
VO2 or HR between exercise modes (exergaming or non-exergaming). *P < 0.05, error bars indicate standard error of the mean (SEM)

Table 2 Coefficient of variation (%) of physiological variables

MCI Apparently healthy

Exergaming Non-
Exergaming

Exergaming Non-
Exergaming

Oxygen uptake (VO2)

RPE 9 7.8 10.8 7.9 9.2

11 9.0 7.4 6.3 5.5

13 7.4 7.8 6.3 6.7

Heart Rate (HR)

RPE 9 3.3 3.7 3.4 3.6

11 3.6 3.8 2.9 2.5

13 3.8 4.2 4.8 3.6
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findings highlight the potential clinical benefit of using
perceptual regulation in this at-risk population.
A future practical application of these findings for this

population, might be an intervention using perceptual
regulation anchored at RPE 11 or 13, to improve fitness.
Indeed, in a similar population individualised training
programs, externally prescribed at the VT were well tol-
erated, and led to greater improvements in fitness over a
12-week intervention, compared to traditional prescrip-
tion at 50% HR reserve [17, 34]. A limitation of exter-
nally controlled individualised programs is the need to
repeatedly assess/reassess the VT across the interven-
tion, as participants improve fitness. Other studies, using
perceptual regulation during interventions, albeit in
younger populations, demonstrate participants regulate
their output at higher work rates as they improve fitness
(for the same RPE), thus negating the need to assess/re-
assess VT [10, 35].
A growing body of literature, demonstrates the im-

portance of considering the affective response to exer-
cise, alongside the intensity, to reduce exercise drop out
[14, 36, 37]. In the present study, whilst affect consist-
ently became less pleasant from RPE 9 to 11 and RPE 11
to 13, the majority of participants reported pleasant
affective responses across the entire duration of the test.
This characteristic shift in affect to become more un-
pleasant has been similarly reported in other populations

when the intensity remains unchanged for a long dur-
ation [24, 38]. It is also important to note that towards
the later stages of the sessions (RPE 13) 29% of partici-
pants reported an unpleasant affective response. One po-
tential explanation for this response, is the long duration
of the session (21 min) in a low-active population who
do not exercise for extended periods, or additionally the
higher work rate, which always occurred after 14 min of
exercise at RPE 9 and 11. In light of these findings, we
would be inclined to suggest it may be more appropriate
at least initially, to perceptually regulate at RPE 11-light
in this population. Anchoring exertion at a lower level
would likely increase pleasant affective responses and re-
duce drop-out rates in an intervention, particularly in
participants who report unpleasant affect at RPE 13. Fu-
ture studies could also consider reordering the RPE
levels, so participants finish the session at a lower RPE,
which may uniformly be associated with a pleasant affect
[39].
Unexpectedly, we saw no differences in work rate or

affect in exergaming compared to non-exergaming. A
potential explanation for this, is the immersion level of
the particular game chosen provided insufficient distrac-
tion from internal physiological cues. Since there were
few studies to base our design, a low level immersive op-
tion was pragmatically chosen to not over burden the
participants cognitively. However, future studies using

Fig. 2 Affective responses across the 21-min of exergaming (coloured symbols) or non-exergaming (open symbols) in either MCI group (a) or appar-
ently healthy (b). Affect significantly declined, but on average remained positive throughout the entire session. There was no difference in affective re-
sponses between exercise modes (exergaming or non-exergaming). *P < 0.05 across RPE levels, the error bars indicate standard error of the
mean (SEM)

Table 3 Affective responses during perceptual regulation, mean ± SD (% participants reporting negative affect)

MCI Apparently healthy

Exergaming Non-Exergaming Exergaming Non-Exergaming

RPE 9 2.25 ± 0.36 (12.5) 1.55±0.43 (12.5) 2.88 ± 0.43 (0) 2.80 ± 0.43 (0)

11 1.41 ± 0.37 (0.25) 1.85 ± 0.23 (12.5) 1.78 ± 0.23 (0) 2.27 ± 0.27 (0)

13 0.79 ± 0.57 (31.5) 1.08 ± 0.42 (25) 0.76 ± 0.48 (25) 1.35 ± 0.27 (12.4)
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exergaming should consider immersion level. It is also
possible that by asking participants to perceptually regu-
late, we may have inadvertently anchored the work rate,
regardless of mode. Indeed, as reported in other studies,
self-selection of exercise intensity [38], rather than per-
ceptual regulation may be a more appropriate way to in-
crease work rate and affect with exergaming.

Study limitations
There are a few other study limitations that warrant dis-
cussion. Firstly, it is important to note this was an ex-
ploratory study with a small sample size and the sample
was intentionally collected from older adults with mem-
ory concerns. This may affect the generalisation of re-
sults to the wider population of low active older adults.
To be included in the study, participants were required
to self-report as low-active, not meeting current activity
of 150 min MVPA per week. However, actual physical
activity was not verified and only a measurement of car-
diovascular fitness was conducted. Both cognitive groups
were well matched for fitness (Table 1), and predicted
VO2max values fell below the fiftieth percentile for
women and the thirtieth percentile for men when com-
pared to the Australian fitness normative values indicat-
ing participants were likely insufficiently active [40].
However, it is possible that differences in the ability to
perceptually regulate and affective responses to exercise
in extremely physically inactive individuals may still
exist. A larger sample size of extremely insufficiently ac-
tive participants would be required to assess this.

Conclusions
To combat growing physical inactivity, particularly in
older adults with and without MCI, new and novel pre-
scription approaches are needed [9]. Here, we provide
the first evidence that low-active older adults (with and
without MCI) can perceptually regulate their exercise in-
tensity using the Borg 6–20 RPE scale and they do so at
a similar intensity to other populations [12, 26, 41, 42].
Furthermore, the majority report a pleasant affective re-
sponses, which may support future adherence, long-term
[14].
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