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Abstract

Background: The need for unobtrusive HR (heart rate) monitoring has led to the development of a new generation
of strapless HR monitors. The aim of this study was to determine whether such an unobtrusive, wrist-worn optical HR
monitor (OHRM) could be equivalent and therefore a valid alternative to a traditional chest strap during a broad range
of activities in a heterogeneous healthy population and coronary artery disease (CAD) patients.

Methods: One hundred ninety-nine healthy volunteers, 84 males and 115 females, including 35 overweight-obese
subjects, 53 pregnant women, and 20 CAD patients were tested in the present study. Second-by-second HR measured
by the OHRM was concurrently evaluated against an ECG-based chest strap monitor during a broad range of activities
(i.e., walking, running, cycling, gym, household, and sedentary activities).

Results: Data coverage, percentage of time the OHRM provides a HR not larger than 10 bpm from the reference, went
from a minimum of 92% of the time in the least periodic activity (i.e., gym), to 95% during the most intense activity
(i.e., running), and to a maximum of 98% for sedentary activities. The limits of agreement of the difference between
the OHRM and the chest strap HR were within the range of ±15 bpm. The OHRM showed a concordance correlation
coefficient of 0.98. Overall, the mean absolute error was not larger than 3 bpm, which can be considered clinically
acceptable for a number of applications. A similar performance was found for CAD (94.2% coverage, 2.4 bpm error),
but the small sample size does not allow any quantitative comparison.

Conclusion: Heart rate measured by OHRM at the wrist and ECG-based HR measured via a traditional chest strap are
acceptably close in a broad range of activities in a heterogeneous, healthy population, and showed initial promising
results also in CAD patients.
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Background
Heart rate (HR) is an important physiological parameter
generated by the spontaneous activity of the sinoatrial
pacemaker cells [1] and is chronically toned down by
vagal activity [2]. It indicates the rhythm at which the
heart pumps venous blood into the lungs and oxygen-
ated blood into the systemic circulation, and as such re-
flects the metabolic need of the body. Because of this

inherently vital central function, HR is influenced by a
multitude of physiological and behavioral stimuli, such
as: blood pressure, respiration, apnea, central motor
command, posture, pain, water immersion, arousals,
emotions and mechanical, physiochemical and biochem-
ical metabolic changes [3]. As described by the Fick
principle, HR is directly related to oxygen consumption
[4]. This relation has been exploited to estimate cardio-
respiratory fitness, also called VO2max, and energy
expenditure [5, 6]. Yet, one of the most common appli-
cations of HR monitoring is to be found in sports, where
HR is used to monitor exercise intensity [6].
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In the 1980s, the growing need for HR monitoring in
the sport industry market led to the development of
wireless, wearable HR monitoring devices consisting of
dry electrodes mounted on a chest strap sensor and a
wristwatch radio receiver [6, 7]. They have been exten-
sively validated in a large range of activities showing
high overall accuracy (i.e., concordance correlation
coefficient = 0.99; limits of agreement, LoA ± 2 bpm;
ICC = 0.99) [8–11]. These chest strap HR monitors, al-
though much more convenient than an electrocardio-
gram (ECG) Holter monitor [12], were still perceived as
cumbersome and not ideal for everyday home monitor-
ing, particularly in non-athletic persons [13, 14]. In the
last decade, the need for less obtrusive HR monitoring
led to the development of a new generation of strapless
HR monitors, most of which are based on photoplethys-
mography (PPG) [15]. This technology provides a meas-
ure of the pulse-volume wave and consequently permits
computation of the pulse rate. The main technical chal-
lenge of this method was, and still is, to effectively filter
out the motion artifacts that pollute the PPG signal [15,
16]. Motion artifacts are distortions of the PPG signal as
a result of subject-sensor movements. Cleaning the PPG
signal of these artifacts becomes even more challenging
when the relevant activities include periodic,
quasi-periodic and non-periodic motion artifacts [17]. It
is similarly challenging when, for the user’s convenience,
the location chosen for the PPG sensor is at the medial
part of the dorsal wrist [18]. This is due to several rea-
sons, such as high, often erratic, motion levels experi-
enced during daily activities as well as sports activities,
the anatomical shape of the wrist (e.g., squared, conical,
bony, rotund), which may not always fit well with the
mechanical design of the device, and the micromotion
generated by extensor digitorum tendons. All these
affect sensor-skin optimal contact.
Although it is clear that this new, unobtrusive HR

monitoring technology “could assist in the
health-enhancing process of exercise or monitor cardiac
and metabolic functions,” it must ensure an adequate
level of reliability, verified by “evidence-based marketing
claims” [19]. It is also important to explicitly define what
is meant here for accurate HR. An acceptable error can
range from about 2% at maximal levels, to 10% in resting
conditions, depending on the use case [20, 21]. Consist-
ently, the American National Standard of “Cardiac mon-
itors, heart rate meters, and alarms” defines accuracy as
a “readout error of no greater than ±10% of the input
rate or ±5 bpm, whichever is greater” [22]. Currently,
the accuracy of HR based on PPG sensors located at the
wrist has been tested in healthy people in laboratory set-
tings by several research teams, albeit resulting in an in-
conclusive opinion. Valenti and Westerterp [15],
Delgado-Gonzalo et al. [23], Spierer et al. [7], and

Wallen et al. [24] have reached a positive conclusion on
the accuracy of PPG-based HR for activities ranging
from a low wrist-motion level (e.g., standing, stationary
cycling) to a high periodic motion level (e.g., walking,
running). Conversely, Parak and Korhonen [13], Wang
et al. [8], Gillinov et al. [25], and Cadmus-Bertram et al.
[26] did not find PPG-based HR monitoring accurate
enough for the same types of activities. This discrepancy
in the literature can be explained in several ways. For
one thing, different PPG sensor technologies were evalu-
ated across these validation studies (i.e., Philips OHRM,
Mio Alpha, Mio Link, Mio Fuse, Scosche Rhytm, Pulse
On, Omron HR500U, Fitbit Charge HR, Samsung Gear S,
Apple iWatch, Basis Peak). For another, sample sizes were
rather variable across studies (from 19 to 50 subjects),
impacting on the data variance and consequently on the
standard errors. Moreover, methodological differences and
limitations concerning laboratory protocols, data
synchronization and data analysis contributed to these ra-
ther incoherent conclusions. Certainly, it is hard to achieve
uniformity in validating HR monitoring derived from PPG
sensor technology when all these variables play a role.
There is still scarce evidence of the reliability of

wrist-worn PPG-based HR monitoring in patients. We
have recently highlighted the clinical value of unobtrusive,
continuous HR monitoring in cardiac patients. This encom-
passes diagnostic applications, such as exertion-induced
tachycardia, detection of bradycardia, HR linked to symp-
toms, chronotropic incompetence, as well as therapeutic
monitoring applications, such as beta-blockers titration
(Sartor F, Papini, GB, Cox L, Cleland JFG: Methodological
shortcomings of wrist-worn heart rate monitors validations,
submitted). Recently, two non-wearable, PPG-based HR
contact and contactless mobile applications were compared
in 108 patients admitted at the chest pain unit or the emer-
gency room [27]. Contactless PPG performed worse than
contact finger PPG. The limitation of these non-wearables
is that HR could be measured only at rest in absence of mo-
tion. Finally, a commercially available wrist-worn PPG
watch (Fitbit Charge HR) has been recently tested in 50
intensive care unit patients, for whom the HR value was
recorded every 5 m for 24 h compared to a bedside medical
monitor [28]. The authors concluded that the HR watch
accuracy worn by these bed-rested patients was poor, and
in any case, less accurate than a pulse oximeter [28]. Yet,
accuracy of the wrist-worn PPG-based HR monitoring
technology needs to be shown in physically active patients.
Since the training concept of Frequency, Intensity,

Time, and, Type has been adopted and recommended by
the American College of Sports Medicine (ACSM), exer-
cising at a personalized target HR has become the stand-
ard practice [29]. A large body of evidence shows that
virtually anybody without known contraindications can
benefit from cardiorespiratory training [29]. Nonetheless,
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specific populations, such as sedentary overweight or
obese people, pregnant women, and coronary artery
disease (CAD) patients undergoing rehabilitation, are
particularly encouraged to undergo cardiorespiratory
training. The ACSM recommends that sedentary
overweight-obese people should engage in regular,
low-to-moderate exercise intensity at 30–40% of their
HR reserve [29]. Healthy women with uncomplicated
pregnancies are advised to engage in physical exercise
activity in order to reduce their risk of gestational weight
gain and gestational diabetes [30]. Also for them, target
HR is used to determine exercise intensity [30]. Accord-
ing to the European Society of Cardiology’s guidelines,
CAD patients undergoing rehabilitation should “accu-
mulate at least 30 min/day, 5 days/week of moderate in-
tensity physical activity or 15 min/day, 5 days/week of
vigorous intensity physical activity (75 min/week), or a
combination of both, performed in sessions with a dur-
ation of at least 10 min,” where moderate intensity cor-
responds to 40–59%, and vigorous activity corresponds
to 60–84% of the HR reserve [31]. Thus, accurate and
unobtrusive HR-monitoring can be crucial for training
within a personalized safe zone [8].
It is therefore of paramount importance to validate this

new, unobtrusive way of measuring HR at the wrist in a
set of circumstances that are more likely to occur in real
life and with the people for whom it is recommend. The
heterogeneity of the sample is key in adding ecological
weight to its evaluation. For these reasons we have com-
pared the HR derived from an innovative wrist-worn op-
tical heart rate monitor (OHRM) to HR measured by a
commercially available ECG-based chest strap monitor
during a broad range of activities (i.e., walking, running,
cycling, gym, household, and sedentary activities), in
healthy normal weight as well as overweight-obese indi-
viduals, pregnant women and CAD patients. Conse-
quently, the aim of this study was to determine whether
such unobtrusive, wrist-worn OHRM could be equivalent,
on a second-by-second level, and therefore a valid alterna-
tive to a traditional ECG-based chest strap during a broad
range of activities in this heterogeneous sample.

Methods
Participants
This evaluation study of the Philips Electronics wrist-worn
OHRM versus a traditional chest strap HR monitor was
designed as a combination of numerous independent data
collections. This is because we routinely collected data
from a rather heterogeneous population executing a var-
iety of activity types in order to improve and validate our
HR algorithm. The full list of activities is listed in the
study design paragraph. All observational protocols in-
volving healthy people described in this study were ap-
proved by the institutional ethical committee review

board of Philips Research Eindhoven. The protocol in-
cluding CAD patients was approved by the local Medical
Ethical Committee of Maxima Medical Center, Veldhoven.
Both protocol approvals were obtained in conformity with
the Declaration of Helsinki. Volunteers were recruited via
posters internally to the Royal Philips Electronics
organization and via a recruitment agency, or in the case
of the CAD patients, by rehabilitation nurses. Prior to
participation, volunteers received an oral and written ex-
planation of our study procedure and they all provided
written, informed consent.
The health status of the apparently healthy volunteers

was assessed by the ACSM Health/Fitness Facility
Pre-participation Screening Questionnaire [29]. All
participants were of white ethnicity. Skin tone was mea-
sured by means of the Fitzpatrick skin typing scale [32]
in only 40 participants, because it was matter of investi-
gation only in a few data collections. The measurements
produced a mean score of 2 ± 0.64 (where 0–6 is skin
type I, white pale, and 35+ is black).

Study protocol
Eighteen activities were executed in this study and were
clustered into six categories: walking, running, cycling,
gym, household, and sedentary (Additional file 1: Table S1).
Walking activities included treadmill (95C, Life Fitness®
Rosemont, Vermont, USA) walking at 3 km · h− 1, 3 km ·
h− 1 with 10% inclination, 4.5 km · h− 1, 4.5 km · h− 1 with
5% inclination, 5.5 km · h− 1, and 6 km · h− 1, and
self-paced outdoor walking. Similarly, running activities
consisted of treadmill running, with speed ranging from
6.5 km · h− 1 to 16 km · h− 1, and self-paced outdoor
running. Cycling was also performed indoors on an erg-
ometer (95 T, Rosemont, Vermont, USA) at 50, 70, and
90 rpm, with a minimum load of 60 watts up to 200
watts, as well as outdoor self-paced cycling on city, ra-
cing and mountain bikes provided by the research team
on separate occasions. The exercises classified as gym
activities consisted of rowing (pm4, Concept 2® Morris-
ville) between 25 and 32 strokes per minute, stepping
(step, Reebok® Canton, Massachusetts, USA, height:
20 cm) at 96 bpm, cross-training (95X, Live Fitness®
Rosemont, Vermont, USA) self-paced, and a series of
group fitness activities such as Zumba, Tae-Bo, yoga/
Pilates and boxing (punching bag). Household activities
included vacuuming, cleaning the table, dishwashing,
stacking groceries and deskwork (e.g., typing and writing
by hand), and were conducted in our laboratories. All ac-
tivities where little motion was present, such as resting
and sitting, were clustered as sedentary types of activity.
Because this database was built with data coming from
multiple data collections as shown in the Additional file 1:
Table S1, some subjects are present more than one time
in the overall database.
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Manual annotation derived by the predefined protocol
was complemented with off-line analysis of the accelero-
metry data in order to accurately determine the start
and the end of each activity. Typically, activities lasted
3 m, except for outdoor and group fitness activities,
which lasted about 1 h. Indoor activities had rest inter-
vals in a seated position between activities in order to
lower the HR before starting a new activity. This allowed
us to appreciate the HR rise and recovery per each single
activity (Additional file 2: Figure S1).

Data acquisition and experimental setup
Subjects were asked to wear an OHRM sensor built into a
watch-like device with a silicon wrist strap (prototype de-
veloped by Philips Research), on one of their wrists re-
gardless of their handedness (Additional file 2: Figure S1).
This prototype is an evolution of the one previously de-
scribed by Valenti and Westerterp [15]. They, however,
tested only the first-generation PPG OHRM sensor, which
had not yet been implemented in a wrist strap design. The
wrist strap was positioned on the dorsal side of the wrist
proximal to the ulnar process, and was strapped tight
enough to limit its motion relative to the wrist without
being uncomfortable for the wearer. This was done
under supervision of a member of the research team.
The OHRM prototype logged the PPG data (16, 32, 64
or 128 Hz) and the 3-axial accelerometer data (16 or
128 Hz). The real-time HR computation was based on
a five-second sliding window and was used for the stat-
istical analysis. The lower sample rates were introduced
to reduce storage and to increase battery life for some ap-
plications. In addition, the real-time, OHRM-estimated
HR together with a HR quality index were logged every
second (1 Hz). The HR quality index was defined as an in-
teger ranging from 0 (bad quality) to 4 (good quality) as-
sociated with the estimated HR and determined by the
algorithm. This index represents an assessment step of the
algorithm of the validity of its output. The data were
stored in the internal memory of the prototype. These
data were transferred via USB onto a personal computer
at the end of each test. As the comparator, we used an
ECG-based chest strap (H3, Polar Electro, Kempele,
Finland) radio connected to a logging watch (RS800CX,
Polar Electro, Kempele, Finland). The chest strap was set
to output a HR value every second, except for data collec-
tions longer than 5 h, where it was set to output a HR
value every 5 s.

Data synchronization
Data were processed and analyzed using Matlab (Math-
works, Cambridge, MA, USA). The HR data from the
OHRM and the chest strap were synchronized using an
automated process in Matlab and by visual inspection.
In the automated process the two sequences were

interpolated on a uniform time grid by linear
interpolation. The delay was calculated as the location of
the maximum of the cross covariance function between
the interpolated sequences, and the sequences were then
aligned. A final visual inspection was performed to check
the alignment and to discard erroneous reference data.

Statistical analysis
Concurrent validity of the wrist-worn OHRM and the
chest strap was evaluated using the following four
metrics. Availability is defined as the percentage of time
that the HR monitoring device is able to provide a heart
rate measurement (quality > 0). Coverage represents the
percentage of time that the OHRM prototype is able to
provide a HR measurement (quality index > 0) and the
measurement differs no more than 10 bpm from the
reference measurement. Mean absolute error (MAE),
standard deviation of residuals or standard error of the
estimate (SEE), and bias were calculated for OHRM HR
with a quality index > 0. The MAE and SEE are defined
as follows:

MAE≔
1
L
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where zi = xi − yi, with xi the output of the OHRM device
and yi the output of the reference device at time index i.
The set z1, …, zL consists of elements for which the
OHRM device is able to provide a HR measurement
(quality index > 0).
Furthermore, Bland-Altman plots and frequency distri-

bution histograms were made using second-by-second
HR values. Limits of agreement were calculated as the
95% confidence interval of the residuals. Additionally, a
heat map (from blue to red) was used to visualize mean
and residual HR data density.

Results
One hundred nighty-nine volunteers (84 males, 115 fe-
males) were recruited and tested, including 53 healthy
pregnant women and 20 CAD patients (Additional file 3:
Table S2). In total, 371 h of data were collected, contain-
ing 25% cycling data, 18% gym data, 18% household
data, 13% sedentary data, and 12 and 13% running and
walking data, respectively (Table 1). The Additional file 2:
Figure S1 shows HR data from a typical data collection
including stepping, walking, cycling, cross-trainer walk-
ing, rowing, bicep curls and running with sedentary pe-
riods in between the activities. The highest coverage, as
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Table 1 Statistical evaluation of OHRM versus the chest-strap HR monitor

Activities Hours collected Coverage Δ≤ 10 bpm (%) Availability quality
index > 0 (%)

MAE (bpm) SEE (bpm) Bias (bpm)

Healthy normal weight, BMI < 25

Walking 20.6 95.4 99.2 1.8 4.7 − 0.2

Running 7.1 96.0 99.5 1.7 6.6 − 0.7

Cycling 11.3 98.4 99.9 0.8 2.6 −0.3

Gym 60.6 92.5 98.6 2.9 9.3 −1.1

Household – – – – – –

Sedentary 21.0 98.0 99.9 1.3 5.5 −0.3

Overall 120.5 94.7 99.1 2.2 7.4 −0.7

Healthy over-weight, BMI > 25

Walking 6.4 97.1 99.5 1.2 3.2 0.1

Running 2.0 98.8 99.9 0.8 2.8 −0.3

Cycling 3.8 98.9 99.9 0.7 2.2 −0.2

Gym 22.6 95.6 99.3 2.0 7.0 −0.7

Household – – – – – –

Sedentary 3.4 99.3 100.0 0.9 3.9 −0.1

Overall 38.2 96.6 99.5 1.5 5.8 −0.5

Pregnant

Walking 9.6 93.7 98.9 2.4 6.1 −0.1

Running – – – – – –

Cycling 3.4 99.9 100.0 0.3 1.0 0.1

Gym 3.4 86.4 97.6 3.4 7.2 −2.0

Household 9.6 86.0 98.4 4.2 7.3 0.7

Sedentary 1.7 97.9 100.0 1.1 2.7 −0.6

Overall 27.7 91.1 98.8 2.8 6.2 −0.1

CAD

Walking 2.6 96.9 99.9 1.7 4.2 1.0

Running – – – – – –

Cycling 2.1 85.6 98.5 4.4 7.1 2.6

Gym 0.8 95.1 99.0 2.7 4.2 0.7

Household 3.5 95.2 99.4 2.2 4.9 0.4

Sedentary 1.4 99.7 100.0 0.8 1.6 0.1

Overall 10.3 94.2 99.4 2.4 5.0 1.0

All

Walking 49.9 94.6 99.0 2.0 5.2 −0.0

Running 43.6 95.2 99.0 2.0 7.2 −0.5

Cycling 93.4 96.0 99.5 1.7 5.3 −0.4

Gym 67.5 92.2 98.6 3.0 9.5 −1.2

Household 67.6 94.7 99.6 2.3 5.0 −0.4

Sedentary 49.0 98.4 99.8 1.2 5.7 −0.4

Overall 371.1 95.1 99.3 1.4 6.5 −0.5

OHRM Optical Heart Rate Monitor, MAE Mean Absolute Error, SEE Standard Error of the Estimate, CAD Coronary Artery Disease
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defined in the methods section, was found for sedentary
activities (98.4%), and the lowest was found for gym ac-
tivities (92.2%) (Table 1). Household activities produced
the lowest mean HR (77.4 ± 13.8 bpm). Mean HR values
in ascending order were 92.7 ± 25.5 bpm during
sedentary activities, 98.2 ± 17.4 bpm for walking, 115.8 ±
23.1 bpm for cycling, 118.8 ± 30.1 bpm for gym activities
and 143.2 ± 26.5 bpm for running. Mean absolute errors
and SEEs did not exceed 3 and 10 bpm, respectively. All
activities tested in this study showed a mean bias close
to zero, excluding the possibility of systematic over- or
under-estimation. This was statistically confirmed by the
lack of significant heteroscedasticity (Table 1).
The distribution histograms reported in the Fig. 1 show

that biases had standard deviations below 10 bpm, mean-
ing that the large majority of residual data points did not
deviate from the zero bias. This was also highlighted by
the heat maps, which located the overall data density
around the zero bias line. The heterogeneity of the indi-
viduals and activities tested generated a broad range of
HR values ranging from 40 to 220 bpm, with a
non-Gaussian, platykurtic distribution bi-modally skewed
at 70 bpm and 120 bpm. Overall the LoA of the difference

between the OHRM and the chest strap HR were below
15 bpm, namely between − 12.3 bpm and 13.3 bpm. For
locomotor activities (running and walking), the LoA were
between − 13.7 bpm and 14.6 bpm and between −
10.2 bpm and 10.3 bpm, respectively. Similarly, for cycling,
LoA were between − 9.9 bpm and 10.7 bpm. The largest
LoA (− 17.5 bpm and 19.9 bpm) were found for gym activ-
ities, which is the most diverse set of physical activities.
Low-intensity activities showed also the lowest LoA, with
− 9.5 bpm and 10.3 bpm for household activities, and
slightly higher values for sedentary activities − 10.8 bpm
and 11.5 bpm.
The Table 1 shows separate statistics for the healthy

normal weight, healthy overweight, pregnant women
and CAD patients included in the database.

Discussion
The primary outcome of this study is that HR measured
at the wrist by a PPG-based OHRM can be used in a
very heterogeneous population including overweight/
obese people pregnant women, and CAD patients during
a large range of activities such as locomotor, gym and
household activities, where the OHRM performs

Fig. 1 A1) Residuals against means of chest strap electrocardiogram (ECG)-based heart rate (HR) and wrist strap photoplethysmography (PPG)-based
HR for walking, where the red dashed lines represent 95% confidence intervals. Color coding (blue = low to red = high) highlights the peak data
density for both residuals and means. A2) shows the frequency distribution of the difference between chest strap ECG and wrist-strap PPG; red dashed
lines represent plus, minus 1 standard deviation, and the black dashed line represents the mean difference. A3) shows the frequency distribution of
the mean HR measured by the two methods. B1,2,3) for running; C1,2,3) for cycling; D1,2,3) for gym activities; E1,2,3) for sedentary activities; F1,2,3) for
household activities and G1,2,3) for all activities
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comparably well as a traditional chest strap ECG-based
measuring device.

Data coverage
To the authors’ knowledge, this is the largest published
second-by-second comparison (371 h) between
wrist-worn PPG-based HR and chest strap ECG-based
HR. Data coverage did not fall below 92.2%, even in
unpredictable non-periodic activities such as gym
activities, which included Zumba, boxing, and Tae Bo, ac-
tivities that had major impacts on the wrist where the
OHRM was placed. Consistently, highly periodic activities,
which are typically known to a have high level of motion
artifacts, such as running [33], showed a higher data
coverage in this study than less periodic activities, such as
gym and household activities. Encouragingly, data cover-
age was still rather high for household activities (94.7%),
which covered a diverse type of physical activities. Not
surprisingly, the highest data coverage was found in activ-
ities with the lowest effect of motion artifacts, such as cyc-
ling and sedentary activities. Yet, it is hard to compare our
coverage data with the existing literature data in general
because of a lack of uniformity in methodology and
reporting. Valenti and Westerterp [15] validated the first
generation OHRM, of which the latest version is consid-
ered in the present study. Consistent with the present
study, they have evaluated HR accuracy on one-second
epochs and used the same definition of data coverage [15].
They reported an overall data coverage of 86% on the en-
tire protocol, which included resting, walking and running
up to 20 km/h [15]. Interestingly their mean coverage for
running was around 74%, ranging from 55% at 16 km/h to
85% at 9 km/h [15]. The mean coverage for running in the
present study, where the latest OHRM generation was
used, was far higher (95.2%) than in Valenti and Wester-
terp [15], showing a considerable improvement. This en-
hancement can be ascribed to improvements in the
optical unit as well as the HR extraction algorithm. Parak
& Korhonen [13] and Delgado-Gonzalo et al. [23] used
five-second averages and reported an overall data coverage
of around 86% for two PPG-based monitors, Mio Alpha
and Scosche myRhythm, and 87% for Mio Link and 94%
for PulseOn in a protocol that included resting, walking,
running, and cycling. A very high coverage (99%) was
reported for running with respect to the PulseOn and the
Mio Link [23]. Yet in these studies, data were averaged
each 5 s, thus smoothing part of the HR signals. Unfortu-
nately, more recent studies did not provide this type of
information and were methodologically limited by the
manual collection of the HR values [8, 24].

Mean and standard errors
The largest mean absolute and standard errors of the
OHRM were observed mainly in activities containing

high levels of non-periodic wrist movements, such as
household and gym. These were in any case not greater
than 2.3 and 3 bpm, respectively. During locomotor
activities the MAE and SEE were below 2 and 8 bpm, re-
spectively. In general, the MAEs of the OHRM in the
present study were lower than those reported in litera-
ture. Spierer et al. [7] reported a MAE of 2.4 bpm at
rest, 2.4 bpm during walking, 5 bpm during running,
and 3.3 bpm for cycling for the Mio Alpha and reported
2.2 bpm at rest, 5 bpm during walking, 6 bpm during
running, with the exception of 1 bpm during cycling, for
the HR500U. Furthermore, Parak and Korhonen [13] ob-
served a MAE of 4 bpm at rest, 5 bpm during walking,
2.9 bpm during running, and 4.6 bpm during cycling for
the Mio Alpha, and recorded 4.8 bpm at rest, 10.5 bpm
during walking, 6.7 bpm during running, and 1.8 bpm
during cycling for the Scosche MyRhythm. Still, it is im-
portant to point out that errors were reported as minute
averages in Spierer et al. [7] and as five-second averages
in Parak and Korhonen [13]. Nevertheless, comparing
MAE and SEE is not straightforward because of the dif-
ferences in averaging and outlier filtering strategies.

Limits of agreement
Limits of agreement in the present study were calculated
on all data with no outlier rejection, and were found below
±15 bpm (see Table 1). This is an excellent result when
considering the number of subjects, activities and
second-by-second analysis. In the literature, LoA of other
optical wrist-worn HR devices are generally poorer. In
Wallen et al. [24], who tested the Apple Watch, Fitbit
Charge, Samsung Gear S and Mio Alpha in 22 healthy
subjects, LoA ranged from − 27 bpm to + 13 bpm for
running and cycling on a cycle ergometer, and in Wang et
al. [8], who tested 50 healthy subjects, LoA ranged from −
27 bpm to + 29 bpm for walking and running on the
treadmill using the Apple Watch and Mio Fuse. Gillinov
et al. [25] tested four wrist-worn watches and one
commercially-available armband in 50 healthy subjects.
They found LoA from − 17 bpm to 20 bpm for the Apple
Watch, − 24 bpm to 31 bpm for TomTom Spark Cardio,
− 24 bpm and 31 bpm for Garmin Forerunner 235, −
31 bpm to 38 bpm for Scosche Rhythm, and − 30 bpm to
45 bpm for Fitbit Blaze. Their research protocol including
treadmill walking and running, stationary bike cycling and
elliptical trainer exercise. Nevertheless, Cadmus-Bertram
et al. [26] found LoA smaller than in our study
(±11.5 bpm) during resting, in 40 healthy subjects. The
LoA values were from − 4.1 bpm to 4.5 bpm for Surge
Fitbit, − 17.1 bpm to 22.6 bpm for Basis Peak, − 10.5 bpm
to 4.5 bpm for Fitbit Charge, and − 7.8 bpm to 9.9 bpm
for Mio Fuse. At the same time, poor LoA were found for
65% of HRmax treadmill running, with values ranging from
− 34.8 bpm to 39.0 bpm for Surge Fitbit, − 27.1 bpm to
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29.2 bpm for Basis Peak, − 41.0 bpm to 36.0 bpm for Fitbit
Charge, and − 22.5 bpm to 26.0 bpm for Mio Fuse.
Although these four studies employed basic and

controlled laboratory protocols and a smaller sample size
than our study, the LoA they reported were much larger
than those observed in the present study. An exception to
this was LoA values for Surge and Charge Fitbit ate rest
when compared with our sedentary activity values.
Furthermore, it is important to note that in Wallen et al.
[24] and Wang et al. [8], as well as in Gillinov et al. [25]
and Cadmus-Bertram et al. [26], the HR values were gath-
ered manually, whereas in the present study Bland-Altman
plots were built on a second-by-second basis.

General accuracy
Given the large spectrum of applications where HR
monitoring can be used, as described in the introduc-
tion, the required accuracy will depend upon each spe-
cific case. Wang et al. and Gillinov et al. [8, 25] used a
0.95 concordance correlation coefficient as the accuracy
threshold. The concordance correlation coefficient takes
into account the deviation of the observations from the
line of best fit and the deviation of this from the ideal
trend line. In the present study, we have calculated an
overall concordance correlation coefficient in the entire
database of 0.977, which corresponds to a good accuracy
of the OHRM. Already in 1977, Cumming & Glenn [34]
showed how an error in HR measurement would lead to
a wrong estimation in cardiorespiratory fitness (e.g., a
12 bpm error would lead to an error of 25% in predic-
tion of cardiorespiratory fitness). Moreover, more re-
cently it was shown how error tolerance depends on the
purpose of the measurement [20]. For instance, the error
may not exceed 3 bpm to measure a maximum HR, and
it should remain below 8 bpm to prescribe a training
target HR [20]. Consistently, in atrial fibrillation, an
error of 10% (around 12 bpm) was used as the criterion
for clinical significance [21]. More recently the American
National Standard of “Cardiac monitors, heart rate me-
ters, and alarms” has defined accuracy as: “readout error
of no greater than ±10% of the input rate or ±5 bpm,
whichever is greater” [22].
Taken together, these observations show that the ac-

ceptable error can range from about 2 to 10% depending
on the use case. In this study the PPG-based OHRM
measured HRs with a MAE and SEE of at most 3 bpm
(~ 2.5%) and 10 bpm (8%), which is clinically acceptable
for a number of applications based on the aforemen-
tioned information.
Although only 3 and 7% of the collected data came

from male CAD patients and pregnant women respect-
ively, it can be appreciated on a qualitative basis that, for
walking and sedentary activities, coverage accuracy was
in line with the overall results. Whereas CAD patients

seemed to have a slightly lower coverage and higher er-
rors for cycling, pregnant women showed slightly worse
coverage and accuracy for gym activities. Household and
sedentary activities were in line with the overall results.
The main strength of this study is its large and diverse

HR database. Moreover, the comparison of HR values
was based on second-by-second synchronized data. This
study also has several limitations. First of all, raw ECG
traces were not used as a reference. Instead, we relied on
a chest strap HR monitor. This type of monitor has been
shown to be highly reliable in measuring HR in a broad
range of activities. However, it could be less accurate in
activities where important levels of chest movement are
performed (e.g., yoga/Pilates). This could have been ob-
jectively assessed with a complete ECG trace. Moreover,
in this study we did not include any other device, thus
not allowing a direct comparison to be made, but only
for comparisons from the literature. Although, we have
included 20 CAD patients in this analysis, this technol-
ogy needs to be extensively validated in patient popula-
tions. The performance of the OHRM has been shown
elsewhere for atrial fibrillation patients [35]. Future re-
search should validate this unobtrusive HR monitoring
technology in larger patient populations, such as cardiac
patients on HR-lowering medications undergoing car-
diac rehabilitation exercise. Because of the nature of this
dataset, which included more data collections, some
subjects have taken part in more of the experiments.
This may have reduced the variance of the data to some
extent. However, there was no systematic selection of
“good” or “bad” subjects with respect to the PPG signal.
Therefore, the impact of the multiple participations in
the study by some of the subjects should be minimal.

Conclusion
The HR measured by the wrist-worn PPG-based OHRM
is acceptably close to the HR measured by a traditional
ECG-based chest strap. The error was at most 3 bpm, and
the LoA were smaller than 15 bpm. OHRM and chest
strap HR monitoring could be mutually used in a broad
variety of physical activities, such as locomotor, cycling,
gym, household and sedentary activities in apparently
healthy normal-weight as well as overweight/obese per-
sons and pregnant women. Data coverage went from a
minimum of 92.2% of the time in the least periodic activ-
ity (i.e., gym), to 95.2% during the most intense activity
(i.e., running), and to a maximum of 98.4% during seden-
tary activities. These results imply that the PPG-based HR
could be used with a satisfactory level of accuracy in a
wide variety of healthy people. Positive preliminary evi-
dence was also provided here for CAD patients. Future re-
search should focus on proof-of-concept studies in target
populations (e.g., rehabilitation).
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