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Abstract

Background: A significant proportion of individuals are left with poor residual functioning of the affected arm after
a stroke. This has a great impact on the quality of life and the ability for stroke survivors to live independently.
While strengthening exercises have been recommended to improve arm function, their benefits are generally far
from optimal due to the lack of appropriate dosing in terms of intensity. One way to address this problem is to
develop better tools that could predict an individual’s potential for recovery and then adjust the intensity of
exercise accordingly. In this study, we aim at determining whether an individualized strengthening program based
on the integrity of the corticospinal tract, as reflected in the amplitude of motor evoked potentials (MEPs) elicited
by transcranial magnetic stimulation (TMS), in conjunction with transcranial direct current stimulation (tDCS), could
lead to more optimal outcomes in terms of arm function in chronic stroke patients.

Methods: This multicentre, double-blinded, randomised controlled trial will aim to recruit 84 chronic stroke
patients. Before and after training, participants will undergo a clinical evaluation, assessing motor recovery of the
affected arm (Fugl-Meyer Stroke Assessment-FMA) and a TMS evaluation to assess the integrity of the corticospinal
tract, as reflected in MEP amplitude. Based on their baseline MEPs amplitude, participants will be stratified into
three groups of training intensity levels determined by the one-repetition maximum (1RM); 1) low: 35–50% 1 RM
(MEPs < 50 μV); 2) moderate: 50–65% 1RM (MEPs 50-120 μV); and 3) high: 70–80% 1RM (MEPs > 120 μV). Training
will target the affected arm (3 times/week for 4 weeks). In addition, participants will be randomly allocated into two
tDCS groups (real vs. sham) and tDCS will be applied in an anodal montage during the exercise.

Discussion: This study will determine whether an individualized strength training intervention in chronic stroke
survivors can lead to improved arm function. In addition, we will also determine whether combining anodal tDCS
over the lesioned hemisphere with strength training can lead to further improvement in arm function, when
compared to sham tDCS.
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Background
Stroke is a leading cause of severe long-term disability
across the globe [1, 2]. One of the most common disab-
ling consequences of stroke is residual muscle weakness
or paresis of the affected arm [3, 4], which has a signifi-
cant impact on patients’ activities of daily life and is a
major contributor to reduced quality of life [5, 6]. Con-
sequently, there has been a move to implement strength
training as part of rehabilitation after stroke [7], to in-
crease strength and improve function of the affected
arm, even at the chronic stage where gains are still ob-
served [8]. Strength training is commonly used with pro-
gressive resistance or repetitive practice and there is
evidence demonstrating that it is an effective interven-
tion to improve strength and activity after stroke [7, 9].
Yet, variability is observed between individuals, in which
some patients demonstrate significant gains in response
to strength training programs while others show either
minimal or no benefits [3, 10]. This brings to question
whether the intensity of strength training programs is
sufficient to produce a training stimulus and challenge
individuals’ maximum capacity. Although there is a
variety of strengthening protocols prescribed to stroke
patients, few studies in the rehabilitation literature assess
critical training parameters to address each individual’s
needs and impairments [11, 12]. A meta-analysis by
Coupar et al. [13] found that neurophysiological factors,
such as the integrity of the corticospinal tract assessed by
non-invasive brain stimulation (NIBS) techniques, were
strongly associated with upper limb recovery after a
stroke; supporting the use of neurophysiological markers
in determining a person’s potential for recovery and func-
tional performance. Thus, there is an urgent need to iden-
tify valid biomarkers of recovery to design better training
interventions for the management of post-stroke disability,
notably by adapting programs to meet each individual’s
capacity in terms of potential for recovery.
Transcranial magnetic stimulation (TMS) is a NIBS tech-

nique allowing the identification of biomarkers reflecting
the integrity of the corticospinal system after a hemispheric
stroke [14]. Stimulation of the motor cortex can elicit
motor evoked potentials (MEPs) in contralateral limb mus-
cles, whose presence after a stroke is strongly suggestive of
preserved functional projections and potential for recovery
in the affected limbs. For instance, Jo et al. [15] reported
that the presence of MEPs from both hand motor cortices
in the early subacute phase was a good predictor of motor

function in patients at 3months after stroke onset. The
combining use of TMS and tractography on 53 patients
with intracerebral hemorrhage and severe motor weakness
showed that patients in whom MEPs could be elicited in
the paretic upper limb, and with a preserved corticospinal
tract, had better motor outcomes at 6months post-stroke
[16]. On the other hand, other studies have reported that
absence of MEPs in response to high intensity TMS of the
ipsilesional motor cortex was associated with poor motor
recovery of the upper limb in both the acute and chronic
stages post stroke [17–19]. In addition to their ability to
predict motor recovery, MEPs can also provide information
on an individual response to exercises [20]. Several studies
have highlighted the importance of this measure not only
to assess corticospinal tract integrity to predict patients’ po-
tential for recovery but also to predict their response to ex-
ercise [18, 21, 22]. Stinear et al. [18] for example, proposed
an algorithm that uses MEPs as a marker for stroke survi-
vors’ stratification in terms of exercises prescription to opti-
mise functional recovery. Among the various parameters
included in the algorithm, such as DTI and the presence of
movements at the thumb and shoulder joints, the ab-
sence/presence of MEPs in response to TMS from the
ipsilesional motor cortex was considered as a crucial
parameter to consider in order to stratify patients based
on their recovery potential.
In parallel, recent developments in the management of

stroke disability indicate that further gains in function
can be obtained when rehabilitation interventions are
combined with neurostimulation techniques designed to
boost motor excitability and enhance response to exer-
cises [23]. The modulation of cortical excitability by
transcranial direct current stimulation (tDCS) has gained
particular interest because of its promising effects in
neurorehabilitation after stroke [24], which include
change in cortical excitability [25–27], enhancement of
motor performance and change of movement accuracy
and speed [28, 29]. The technique aims at modulating
neuronal excitability using a constant and weak current
(1–2 mA) which passes through electrodes placed on the
scalp. Depending on the current direction, the stimula-
tion can either enhance (anodal) or depress (cathodal)
the excitability of the stimulated cortical area [30]. A
number of studies have investigated the impact of anodal
tDCS on motor recovery of the affected upper limb of
stroke patients [31]. Kim et al. [32] stimulated the ipsile-
sional cortical region of 10 subacute stroke patients on
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average 12 weeks post infarct and reported significant im-
provement in motor performance of the hemiparetic
hand, outlasting the stimulation session for at least 60
min. Similar results were obtained by Fregni et al. [33]
and Hummel et al. [34], where stroke patients were found
to have functional improvement in the paretic hand that
outlasted the stimulation period with an improvement
magnitude of 6.7 and 8.9%, respectively. Furthermore, re-
sults from a meta-analysis [35] also support the thera-
peutic potential of tDCS as an adjuvant treatment strategy
to enhance training in stroke patients with upper limb def-
icits, where tDCS demonstrated a significant impact on
rehabilitative training with a moderate effect size of + 0.52
(p < 0.001) and + 0.69 (p < 0.001) for both immediate and
longer-lasting analyses (up to 6months), respectively.
According to the existing literature, there is a clear need

to further validate the use of MEPs as a classification tool
and to explore new ways on how to refine the use of this
measure, in order to optimize post-stroke training inter-
ventions. In addition, since tDCS is still relatively new in
the field of stroke rehabilitation, no study to date has tried
to determine whether tDCS can enhance the effects of a
strength training intervention in stroke patients; a type of
intervention commonly used in rehabilitation [3]. Ultim-
ately, there is an urgent need to design better training in-
terventions for the management of post-stroke disability,
notably by adapting programs to meet each individual’s
capacity in terms of potential for recovery. There is also
an important need to determine whether non-invasive
brain stimulation techniques, such as tDCS, can be used
in conjunction with tailored strength training exercises to
boost functional recovery after stroke.
The primary goal of this RCT is to determine whether

a 4-week tailored strength training program could lead
to improved arm function in chronic stroke survivors.
The secondary aim is to determine whether combining
anodal tDCS of the lesioned hemisphere with strength
training could lead to further improvement in arm func-
tion when compared to sham tDCS. This study will help
determine whether tailored strength training interven-
tions in stroke survivors, based on MEPs amplitude, can
lead to greater gains in arm function. In addition, it will
also establish whether combining anodal tDCS with tai-
lored strength training can further promote recovery in
stroke survivors when compared to sham tDCS.

Methods
Study design and setting
This is a multi-centre, randomised controlled trial (RCT)
study. Figure 1 illustrates the flow diagram of the study
from recruitment and screening for eligible participants to
post-training outcome assessments. The RCT takes place
in Canada and involves three recruiting sites in two prov-
inces (Québec: Montréal, Sherbrooke; Ontario: Ottawa).

The study is ongoing and is currently during subject re-
cruitment phase (May 2017 till present).

Participants
Participants will be recruited using several recruitment
procedures such as newspaper advertisement, search in
medical archives and former patient lists from each site. Po-
tential participants will first be screened over the phone to
determine their interest and initial eligibility to participate
in the study following a script for early recruitment, after
which they will be invited to attend each site, for a screen-
ing visit and evaluation. Screening and clinical evaluations
will be performed to verify eligibility to participate. At the
beginning of the first study visit, written consent will be
obtained from each participant and all participants will be
informed about the duration and procedure of the study.

Inclusion/exclusion criteria
Males and females will be eligible to participate in the
study if they meet the following criteria: 1) are aged 18
years and older; 2) have had solely one stroke; 3) be in a
chronic stroke phase (> 6months) and 4) have completed
their rehabilitation treatment. Participants will be ex-
cluded from the study if any of the following criteria are
met: 1) a significant spasticity at the affected upper limb
(a score ≥ 3 on the modified Ashworth scale) [36]; 2) a sig-
nificant pain intensity at the affected upper limb (a score ≥
6/10 on the Visual Analog Pain Scale) [37]; 3) a major
sensory deficit (a score ≤ 25/34 on the Nottingham Sen-
sory Assessment) [38]; 3) a presence of hemineglect (> 70%
of unshaded lines on the same side as the motor deficit on
the Line Cancellation Test) [39]; 4) an apraxia (a score >
2.5 on the Alexander Test) [40]; 5) any cognitive impair-
ments (a score ≤ 2/5 on the Mini-Cog Test) [41]; 6) the
presence of a neurological disorder other than a stroke; 7)
concomitant orthopaedic problems at the affected upper
limb and 8) any contraindication to TMS and/or tDCS,
such as epilepsy, metallic implants, a cardiac pace-maker
or pregnancy, for female subjects.

Assessment period
Prior to and following the intervention period, partici-
pants will complete clinical and neurophysiological evalu-
ations. Each evaluation day will last approximately 1.5 h
and both visits will take place in the week before (baseline)
and the week after (post-training) the intervention.

Randomisation and blinding
According to the amplitude of their TMS-induced MEP
responses, three levels of stratification will be used,
which are adapted from Milot et al. [22]: 1) no detect-
able MEPs (< 50 μV); 2) detectable MEPs (50-120 μV)
and 3) clearly detectable MEPs (> 120 μV). Within each
stratum, participants will be further randomly allocated
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into two tDCS groups: 1) tDCS real group and 2) tDCS
sham group. Participants will be randomly assigned to
either the tDCS real group or the tDCS sham group with
a 1:1 allocation. Randomisation allocation will be gener-
ated by a computer using a blocked randomisation with
variable block sizes of 2 and 4. The participants, the
evaluators, involved in the clinical and neurophysio-
logical evaluations, the research staff enrolling partici-
pants and the data analysts will be blinded to the tDCS
group assignment.

Clinical evaluation
Baseline participant information including age, gender, time
since stroke and location of stroke will be collected at the

initial visit of each participant by a blinded evaluator to help
characterize the sample. The clinical evaluations will consist
of measurement of the range of motion of shoulder flexion,
elbow flexion and wrist extension of both upper limbs, the
Fugl-Meyer Stroke Assessment-FMA (upper limb section;
66 = normal) [42], the Box and Block Test [43], the Motor
Activity Log [44] and measurement of grip strength, mea-
sured by the JAMAR® hand dynamometer.

Neurophysiological evaluation
The neurophysiological evaluation will be performed by a
trained evaluator blinded to the participants’ tDCS group
allocation and will consist of assessment of the integrity of
the corticospinal tract and cortical reorganization post

Fig. 1 Study design flow diagram
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training through the use of motor evoked potentials
(MEPs) elicited by TMS. For TMS testing, participants
will be seated in an armchair with both hands resting in
pronation. The participant’s skin will be cleaned with alco-
hol and surface electromyography (EMG) electrodes will
be positioned over the first dorsal interosseous (FDI) of
both hands and the extensor carpi radialis (ECR) of the af-
fected arm. Using a TMS system (Magstim 2002, Magstim
Company, Dyfed, UK) and a 70-mm figure-of-eight coil,
we will first determine the hotspot and resting motor
threshold (rMT, lowest intensity to evoke reliable MEPs
≥50 μV) from the contralesional hemisphere. These coor-
dinates will be used to guide the identification of the opti-
mal location of the ipsilesional primary motor cortex (M1)
of the affected hemisphere, when needed. The rMT will
then be determined using the Motor Threshold Assess-
ment Tool software (MTAT 2.0; Clinical Researcher,
Knoxville, TN, USA). The software allows for fast estima-
tion of motor threshold through the maximum-likelihood
strategy based on the PEST (Parameter Estimation by Se-
quential Testing) algorithm [45]. Next, a series of supra-
threshold stimuli (130% rMT, n = 10) will be delivered
over the hand motor area to elicit MEP in the resting
state. We will repeat these procedures for the ipsilesional
hemisphere. If no MEPs can be elicited in the affected
FDI, the coil will be moved to target the representation of
the arm to elicit MEPs in the affected ECR. If
peak-to-peak MEP amplitude of the affected ECR does
not reach the chosen threshold of 50 μV, even at the max-
imum output of the stimulator (100%), the participant’s
response will be classified as “MEP absent”. After testing
in the resting state, corticomotor excitability of the le-
sioned hemisphere will be tested in the active state. Partic-
ipants will remain seated in the armchair and will be
asked to actively exert a constant force (20% of maximal
voluntary effort depending on the participant’s ability to
contract) against a pinch dynamometer on the affected
side using a lateral key-pinch with the thumb and index
finger. During the contraction (duration 5 s), a suprathres-
hold TMS pulse (130% of rMT) will be delivered at 3 s to
elicit a facilitated MEP along with a silent period (SP). The
SP refers to the interruption of EMG activity in the target
muscle arising from spinal and cortical inhibition (GABA
B receptors) resulting from the stimulation [46]. Both
facilitated MEPs and SP will be measured 5 times with at
least 30 s between trials to allow for recovery.

Intervention period
All subjects will participate in an outpatient supervised tai-
lored strength training program, which will follow the rec-
ommendations of the American Stroke Association (ASA)
position on exercise prescription after stroke [47]. Specific-
ally, it will be a 4-week training intervention, performed 3
times per week non-consecutively, with 3 series per exercise

of 10 repetitions and a 2-min break in between exercises.
The strength training program will be conducted for 1 h in
an outpatient rehabilitation setting and supervised by an
experienced trainer who will closely monitor the partici-
pants’ exercise performance. The training will commence
with a 5-min warm-up comprising of active movements of
the muscles to be trained. Using free weights, the
one-repetition maximum (1RM), which is the maximum
amount of weight load an individual can lift for one repeti-
tion, will be estimated by the 10RM [48] in order to avoid
tendino-muscular injuries and fatigue. The 10RM will be
determined for the muscles playing a key role in the func-
tional performance of the upper limb [49, 50]. These mus-
cles are the wrist extensors and the elbow and shoulder
flexors. In addition, the grip muscles of the affected hand
will be trained with a JAMAR® dynamometer. Participants’
maximal grip force will be determined and used to dose the
training of the hand muscles and its progression.
As intensity plays a crucial role in response to training,

the intensity of the strength training program will be tai-
lored to each participant’s potential for recovery based on
their baseline MEP amplitudes and gradation of the inten-
sity will follow the ASA recommendation [47] and will be
based on the 1RM. This same gradation will be applied for
the hand muscles based on the participants’ maximal grip
force on the JAMAR®. Thus, for participants in the MEP <
50 μV strata (no detectable MEP; low potential for recov-
ery), the training will start at 35% of the 1RM for each
muscle group and will then be increased by 10% each week
to reach 50% of the 1RM by week 4. For participants in the
MEP 50-120 μV strata (detectable MEP; moderate potential
for recovery), the training will start at 50% of the 1RM to
reach 65% by week 4. For the participants in the MEP
≥120 μV strata (clearly detectable MEP; high potential for
recovery), they will train at 70% of the 1RM during week 1
and progress to 80% of the 1RM at week 4. In combination
to the % 1RM, the Borg Rating of Perceived Exertion Scale
(BRPE), a measure of an individual’s self-perceived physical
exertion during exercise, will be used to further control the
intensity of exercise within and between MEP strata while
taking into account the individual’s residual ability. The
Borg Scale can be accurately rated by chronic stroke survi-
vors and is a valid tool for regulating exercise intensity [51,
52]. Thus, for the first three training weeks, participants in
each MEP stratum will train at a perceived intensity be-
tween 11 and 13/20 (“fairly light”/“somewhat hard”), corre-
sponding to about 66% of an individual’s maximal effort,
and progress toward a perceived intensity between 15 and
17/20 (“hard”/“very hard”), corresponding to about 80% of
an individual’s maximal effort, at week 4.

Transcranial direct current stimulation (tDCS)
An anodal montage over the ipsilesional hemisphere will be
used. The localisation of the lesioned M1 and placement of
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electrodes will follow the protocol from DaSilva et al. [53].
In essence, the vertex will be located by marking the dis-
tance halfway between the nasion and inion and the dis-
tance between the right/left pre-auricular points. Location
of M1, corresponding to C3/C4 on the EEG system, will be
estimated by using 20% of the pre-auricular distance from
the vertex. The anode will be placed over the M1 area
whereas the cathode will be placed on the contralateral
supra-orbital region. For the tDCS group, a direct current
will be generated by a tDCS stimulator and gradually in-
creased in a ramp-like fashion over the first 8 s until a max-
imum intensity of 2mA is achieved. The tDCS will be
applied for 20min during each training session for a total
of 12 sessions. The parameters chosen in the proposed pro-
ject are considered safe for the application of tDCS [30, 31,
54]. For the group receiving sham tDCS, the protocol will
be similar to the tDCS real group although the stimulation
will be applied for the first 30 s only; a duration long
enough to induce similar perceived sensation as real
tDCS, to ensure blindness of the participants to the
tDCS type [55]. After each training session, using a
home-developed questionnaire, participants will be
questioned about the presence of tDCS symptoms, their
intensity and relatedness to tDCS.
If any participants develop contra-indications to the

training intervention or the tDCS stimulation, they will
be discontinued from the intervention but will be in-
cluded in an intention to treat analysis.

Outcome measures
Primary outcome measures
The primary outcome measures will be change in
Fugl-Meyer Stroke Assessment Scale-FMA (66 = normal)
[42], which will be used to assess changes in the trained
arm motor function and change in peak-to-peak MEP
amplitude, motor threshold and silent period, elicited by
TMS, to assess changes in motor cortex excitability and
cortical reorganization.

Secondary outcome measures
Secondary outcome measures will include:

� change in grip strength, which will be measured by the
JAMAR® hand dynamometer (average of 3 trials in kg);

� change in Box and Block test, which will be used to
evaluate manual dexterity by counting the number
of blocks that can be moved from one compartment
to another in 60 s [43];

� change in Motor Activity Log, which will assess
participants’ self-reported level and quality of use of
the affected arm in activities of daily living (ADL)
[44] and;

� change in active and passive ranges of motion in
shoulder flexion, elbow flexion and wrist extension,
which will be assessed with a goniometer.

Along with the FMA, these variables were chosen to
ensure that the most severely affected participants would
be able to perform to some extent the required tasks,
knowing that individuals without MEPs often present
limited voluntary movement at the affected upper limb.

Sample size and power calculations
A priori power analysis was performed in G*Power 3.1.9.2,
using a two-tailed independent samples t-test having an
alpha level of 0.05, to calculate the sample size required in
this study. By stratifying participants based on their MEP
amplitude to provide an appropriate dosage of training,
we expect all participants within the three MEP strata to
benefit from the 4-week tailored strength training pro-
gram. The sample size was thus calculated based on the
expected difference in motor function gains between the
tDCS real and the tDCS sham groups. Based on the re-
sults of studies having used repetitive application of tDCS
in chronic stroke survivors, we expect an 8-point gain in
FMA for the tDCS real group [56]. Furthermore, prelim-
inary results based on this study showed a 7-point gain on
the FMA scale after 4 weeks of strength training for par-
ticipants presenting pre-training MEPs. Therefore, we es-
timate that the tDCS sham group (including participants
with and without MEP) will show at least a 6-point gain
on the FMA scale, exceeding the 5-point gain minimal de-
tectable change (MDC) of this scale [57]. Thus, with an
estimated average difference in FMA gain between both
groups of 2 points (SD = 3), with an effect size of 0.66 and
a power of 85%, we calculated that a total of 84 partici-
pants will be needed to detect differences between groups.
However, presuming an attrition rate of 20%, a total of
105 participants will be recruited for the purpose of this
study.

Statistical analysis
Descriptive statistics will be used to characterize the
sample. We will verify if, at the beginning, the two tDCS
groups will be comparable by using independent t-tests
or Chi-squared tests, depending on the nature of the
variables. To evaluate the impact of tailored exercises
based on MEP stratification on changes in FMA and
MEP measures, as well as the impact of tDCS on en-
hancement of training response, a two-way 3X2 ANOVA
[MEP strata (three levels) and type of tDCS (2 levels)]
will be used. The significance level will be set at 0.05. If
an interaction is noted, paired t-tests will be used to
locate any significant differences in each stratum with a
Bonferroni correction for multiple tests (adjusted
p-value of 0.02).
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Discussion
This study will be the first RCT to integrate a commonly
used rehabilitation treatment, which is a strength training
program of the affected arm, with state-of-the-art brain
evaluation protocols and neurostimulation techniques
(TMS and tDCS) to allow optimization of the intensity of
training based on each stroke survivor’s recovery potential.
This study will create an initial, yet strong evidence base
for MEP stratification as a tool to guide clinicians in
providing optimal tailored exercise programs to support
recovery post-stroke. More importantly, the marked ex-
pected improvement in the affected upper limb’s motor
function, following the tailored strength training program,
will allow stroke survivors to have a more active lifestyle
and ultimately optimal quality of life.
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