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Abstract 

Background:  To propose cut-off points for older adults’ weakness for upper and lower limbs muscle strength nor-
malized by body size with the ratio standard/muscle quality and allometric scaling.

Methods:  Ninety-four community-dwelling older adults (69.1% women) were assessed for 49 body-size variables 
(anthropometry, body composition and body indexes), handgrip strength (HGS), one maximum repetition measure-
ment for knee extensors (1RM), isokinetic knee extension peak torque at 60°/s (PT), and six-minute walk test (6MWT). 
Ratio standard or muscle quality (muscle strength/body size) and allometric scaling (muscle strength/body sizeb; 
when b is the allometric exponent) were applied for body-size variables significantly correlated with HGS, 1RM and 
PT. Cut-off points were computed according to sex based on mobility limitation (6MWT < 400 m) with ROC curve and 
Youden index.

Results:  Absolute HGS, 1RM and PT cut-off points were not adequate because they were associated with body 
size (r > 0.30). But it was corrected with muscle strength normalization according to body size-variables: HGS (n = 1); 
1RM (n = 24) and PT (n = 24). The best cut-off points, with the highest area under the curve (AUC), were found after 
normalization for men: HGS/forearm circumference (1.33 kg/cm, AUC = 0.74), 1RM/triceps skinfold (4.22 kg/mm, 
AUC = 0.81), and PT/body mass*height0.43 (13.0 Nm/kg*m0.43, AUC = 0.94); and for women: HGS/forearm circum-
ference (1.04 kg/cm, AUC = 0.70), 1RM/body mass (0.54 kg/kg, AUC = 0.76); and PT/body mass0.72 (3.14 Nm/kg0.72; 
AUC = 0.82).

Conclusions:  Upper and lower limbs muscle weakness cut-off points standardized according to body size were pro-
posed for older adults of both sexes. Normalization removes the effect of extreme body size on muscle strength (both 
sexes) and improves the accuracy to identify weakness at population level (for women, but not in men), reducing the 
risk of false-negative/positive cases.
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Background
Muscle weakness is a natural muscle strength loss 
occurring along aging, and it predicts older adults’ 
increased risk of hospital admissions, depression, frac-
tures and premature mortality [1–3]. Muscle weakness 
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can predict functional disability (i.e., difficulty to per-
form instrumental and basic activities of daily living-
ADL) like as mobility limitation [4], which is even more 
important than multimorbidity to forecast mortality 
amongst older adults [5]. As a consequence of its pre-
dictive ability, muscle weakness was used to identify 
geriatric syndromes such as dynapenia [6], frailty [7] 
and sarcopenia [8].

Muscle weakness is normally measured using mus-
cle strength tests such as handgrip (HGS) or leg exten-
sion strength [8]. The current values to identify muscle 
weakness are based on absolute (non-normalized) mus-
cle strength results [7, 9–17] or dividing absolute results 
by a body-size variable (ratio standard) such as body 
mass [18, 19] or by some body composition component, 
like lean tissue (muscle quality) [20–22]. The identifica-
tion of weakness based on absolute muscle strength cut-
off points may be inaccurate for lighter body mass and 
shorter height older adults [23–25]. In fact, the absolute 
values characterize lighter and shorter body size older 
adults as having muscle weakness, even if they sustain 
their instrumental and basic ADL [26]. This is a false pos-
itive muscle weakness diagnostic, that frequently leads to 
an unnecessarily utilization of public health resources, 
contributing to health burden [27]. Another topic that 
merits consideration is the inaccuracy of the ratio stand-
ard/muscle quality procedure because it overestimates 
the real strength of light/short older adults and underes-
timates it for tall/heavy ones [26]. These limitations are 
a consequence of the nonlinear relationship between 
muscle strength and body-size variables [23–25]. To 
overcome these constraints, the utilization of allomet-
ric scaling, that contemplates power and sensitivity in 
the nonlinear relationship between muscle strength and 
body size with the allometric exponent (b) might repre-
sent an adequate option [23–26].

Previous studies reported already the power function 
ratio in older adults between HGS and body-size vari-
ables as body mass (b=0.63 or 0.40 or 0.31) [23–25], height 
(b=1.84) [24] and fat-free mass (FFM) (b=0.46) [24] and 
between leg extension strength and body mass (b=0.67 or 
0.69 or 0.72 or 0.74 or 0.96) [26, 28]. Indeed, scaling HGS by 
body size (example: HGS/heigth1.84) removes the effect of 
body size on muscle strength [24], but the scaling mus-
cle strength by body size to determine muscle weakness 
cut-off points has not been considered from HGS and 
knee extension in isokinetic dynamometer, excepting the 
one maximum repetition measurement for knee exten-
sors (1RM) scaled to body mass [26]. Besides, important 
body-size variables related to mobility and ADL (e.g. fat 
mas [29], FFM [30] and leg length [31]) were not utilized 
to scaling muscle strength and create muscle weakness 
cut-off points.

Thus, our objective is to propose cut-off points for 
older adults’ weakness with upper and lower limbs 
muscle strength normalized by body-size with the ratio 
standard/muscle quality and allometric scaling. We 
hypothesize that the normalization of muscle strength 
by ratio standard/muscle quality and allometry can be a 
way to approach muscle strength regardless of body size, 
which should reduce the risk of bias in identifying false-
positive cases of vulnerable older people.

Method
Design and study population
This is a cross-sectional study conducted from October 
2016 to May 2017 at the University Hospital of Ribeirao 
Preto School of Medicine, University of São Paulo, Bra-
zil (HC-FMRP-USP). The study was approved by the 
HC-FMRP-USP institutional review board (CAAE: 
54345016.6.3001.5440). Older adults were voluntarily 
recruited and assigned an informed consent. This manu-
script followed the guidelines from The Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) conference list [32].

The sample consisted of 94 community-dwelling older 
adults (≥ 60  years old, 69.1% women) recruited in pro-
jects for older adults of USP and in health community 
services. Inclusion criteria were ≥ 60 years old, walk inde-
pendently, absent limitation to execute all procedures, 
acute infections, cancer diagnosis, hip or knee prosthe-
ses, unstable cardiovascular condition, stroke sequelae, 
tumors, and weight loss > 3  kg in the last three months. 
The exclusion criteria were discontinuity in the study and 
cognition impairment (assessed by Mini Mental State 
Examination).

A sample size calculation (n = [ZySD/ε]2) [33] with 
trust level (Zy = 0.95), greater compatible population var-
iability founded in the literature (SD of 1RM: ± 19.96 kg) 
[34, 35] and maximum desired error (ε ≤ 8.0 kg) was per-
formed and identified a minimum sample size of n = 24 
for each sex.

Procedures
A multidisciplinary health team (nurses, nutritionists, 
pharmacists, physical educators, physicians, and physi-
otherapists) performed data collection. The appraisers 
were the same in each test. Data collection occurred on 
three non-consecutive days: 1st) recruitment: inclusion 
criteria verification by phone calls; 2nd) cognition assess-
ment, anthropometrics, body composition, HGS, mobil-
ity and physical activity level assessment; and 3rd) lower 
limbs muscle strength assessment. These procedures are 
resumed in Fig. 1.
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Cognition assessment
The validated Mini Mental State Examination (MMSE) 
was used to assess participants’ cognition status and to 
ensure that participants understood the other tests exe-
cuted in the present study [36]. The MMSE was executed 
in a quiet room, face to face with the researcher. Those 
who have MMSE ≤ 12 were considered with dementia 
and were excluded [37].

Measure of body‑size variables
Forty-nine body-size variables (Additional file 1: Supple-
ment A) were collected to propose allometric exponents 
and to normalize performance in muscle strength tests. 

The selection of these variables were based on those 
previously used to calculate body indexes [38–46], and 
involved anthropometric measurements [47] and body 
composition (Dual Energy X-ray Absorptiometry-DXA 
and bioelectrical impedance analysis-BIA), as briefly 
detailed below (body indexes).

Measures and instruments utilized were: body mass 
(Filizola® digital scale, model Personal, Brazil), height 
(Sanny® wall-mounted aluminum stadiometer, Profes-
sional model ES2020, Brazil), circumferences (Sanny® 
inelastic and inextensible measuring tape, Brazil), 
skinfolds (Lange scientific skinfold caliper, Cambridge 
Scientific Instruments, Cambridge, Maryland), bone 

Fig. 1  Study phases and data from older adults included, excluded, analyzed and procedure flow
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breadths (Sanny® anthropometer and small sliding 
caliper, Brazil), and segment lengths (Sanny® segmom-
eter, Brazil), lean soft tissue (LST) components, appen-
dicular skeletal muscle mass (ASM) and FFM (DXA, 
Hologic®, model QDR4500W, software version 11.2, 
Bedford, MA), FFM [46] (Bioimpedance Imp DF50 
Body Composition Analysis, ImpediMed®, Brisbane, 
Queensland, Australia).

Anthropometry (body mass, height, circumferences, 
skinfold andbone breadths) was collected according to a 
standardized procedure published elsewhere [47]. DXA 
involved a full body scan performed (according to the 
manufacturer’s recommended procedures) and inter-
preted always by the same technician. BIA exam was 
conducted in controlled temperature room (23 ºC) with 
the older adults backed on a litter in comfortable position 
after rest for 10 min in supine position, without footwear 
and adornments (rings and earrings), with legs separated 
and opened hands. Older adults were previously oriented 
(24 h before the exam) to avoid the consumption of alco-
hol and caffeine (coffee, tea, chocolate), diuretic medica-
tion, intense physical activity and meal four hours before 
the exam.

Body indexes
The body indexes derived from anthropometry were 
body mass index (BMI, kg/m2) [38], body mass*height 
[39], human body surface area (SA, m2) [40], absolute 
mid-arm muscle circumference (MAMC, cm) [41], cor-
rected arm muscle area (CAMA, cm) [42], arm fat area 
(AFA,cm2) [43], FFM [44] and fat mass (obtained by body 
mass difference). The body indexes derived from body 
composition were LST of arms and legs, ASM, ASM/
height (m)2 [45], FFM estimated from BIA [46] and DXA, 
when fat mass were estimated by body mass difference.

Mobility measurement
The cut-off points for muscle weakness were estab-
lished based on the main outcome (mobility limitation). 
Mobility was verified based on the six-minute walk test 
(6MWT) carried out in a corridor 30-m length. Along 
this path, at every three meters there was a cone to help 
researcher to precisely identify the walked distance [31]. 
Participants were instructed to cover the longest distance 
walking as faster as they could during the six-minute 
time. Nevertheless, participants could slow down, inter-
rupt the walking, and resume the test whenever desired, 
although time was not paused. Total walked distance was 
recorded and mobility limitation was characterized when 
the 6MWT < 400 m [48].

Muscle strength measurements
Muscle strength was measured using HGS, one maxi-
mum repetition measurement for knee extensors (1RM) 
and isokinetic knee extension peak torque at a velocity 
of 60°/s (PT). The maximum HGS was measured with a 
manual dynamometer (Jamar®, model 5030J1) using a 
previously published protocol [49]. Three attempts were 
performed, one minute apart, with the dominant hand 
and the highest result was recorded in kg as HGS [50, 51]. 
The 1RM was estimated in a leg extension machine (Lion 
Fitness® model LFS) with a submaximal repetition pro-
tocol: 1RM = weight lifted/(1.0278 − [0.0278*nº of reps]) 
[52]. The detailed protocol was published elsewhere [26]. 
Briefly, a warm-up with lowest load was executed with 10 
repetitions. After two-min resting, the load was doubled 
and eight repetitions were performed. After three-min 
resting, the test started and initial load was based on par-
ticipants body mass (45% for women and 64% for men). 
The goal was to perform a maximum of 10 repetitions 
in three possible attempts (separate with three minutes 
intervals). Therefore, depending on older adults’ muscle 
strength level, these initial loads could be increased or 
decreased to estimate 1RM. The PT of the right lower 
limb was recorded with the Biodex (model System 4 Pro) 
isokinetic dynamometer and results are in newton-meter 
(Nm) according to standardized protocol [53]. Briefly, 
a warm-up with 10 submaximal repetitions in angular 
speed of 60°/s was performed. After three-min resting, 
the test was started with executing five maximum repeti-
tions verbally encouraged by researchers without visual 
feedback. 1RM was executed prior to the PT, and the 
time interval between these tests was at least 30 min.

Physical activity level measurement
The International Physical Activity Questionnaire—Short 
Version was used to get physical activity level [54]. Physi-
cal activity level was dichotomized into sedentary (0) 
and irregularly active, active or very active (1). These two 
categories were introduced in the models to provide allo-
metric exponents.

Muscle strength normalization procedures (ratio standard/
muscle quality and allometric scaling)
HGS, 1RM and PT were considered in three different 
ways: 1) absolute (non-normalized); 2) ratio standard or 
muscle quality (muscle strength/body-size variable); and 
3) allometrically adjusted (muscle strength/body-size 
variableb).

Allometric exponents (b) were proposed only for body-
size variables that showed significant correlation (Pear-
son’s correlation) with muscle strength. To generate the 
allometric exponents, muscle strength (Y) and body-size 
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variables (X) were converted to natural logarithm (ln) 
and the slope of regression line is allometric exponent 
(b), according to more detail previously published [24]. 
Therefore, allometric exponents were discarded when the 
interaction (ln body-size variable*age*sex*physical activ-
ity level) was significant or when there was multicollin-
earity in the linear regression (variance inflation factor 
[VIF] > 10) [55].

We also consider other allometric exponents (b) of the 
literature, as described in Table 1.

In order to verify whether normalization removed the 
influence of body size on muscle strength, the correlation 
between normalized muscle strength and body-size vari-
ables (body mass, height and body-size used) should be 
negligible (r ≤ 30) [57].

Statistical analysis
We recorded and reviewed the data by double typing, fol-
lowed by an exploratory analysis for error detection. We 
use parametric statistics for continuous variables consid-
ering the central limit theorem [58].

Proposition of cut‑off points for muscle weakness
Absolute muscle strength and normalized by ratio stand-
ard/muscle quality or allometric scaling had their area 
under the curve (AUC) quantified by the ROC curve. The 
Youden index [59] selected the most appropriate cut-off 
points with the best relationship between sensitivity and 
specificity for the primary main outcome (functional lim-
itation: 6MWD < 400) [48].

The cut-off points were considered adequate when 
they have AUC ≥ 0.70 [60] simultaneously for both sexes 
(p < 0.05) and when the correlation between muscle 

strength and body-size variables (body mass, height and 
body-size used) were negligible (r ≤ 0.30) [57].

For each muscle strength test (HGS, 1RM and PT), 
way (non-normalized, ratio standard/muscle quality and 
allometric scaling) and for each and sex was selected 
the adequate cut-off point according the superior accu-
racy. When there was a tie in accuracy, the variable with 
the greatest sensitivity or specificity was chosen. Finally, 
the AUC—ROC curves of non-normalized and normal-
ized muscle strength were compared with each other to 
decide the best cut-off point.

The analyzes were performed using the SPSS 25.0 sta-
tistical package, and the ROC curves and Youden index 
in MedCalc 15.2 with a previously established level of 
significance (α = 5%).

Results
Sample was encompassed by 100 older adults (69 
women) who agreed to participate in the study. From 
those, 6 were excluded for different reasons, as the stages 
of the study proceeded, as detailed in Fig.  1. Therefore, 
the final sample comprised 29 older men (31%) and 65 
older women (69%).

Sample characterization according to sex is shown in 
Table  2. About main outcome of the study, twenty-five 
women (38.5%) and seven men (24.1%) had functional 
limitation (6MWT < 400 m).

The correlations between muscle strength and body-
size variables are also shown in Table  2. Most of the 
body-size variables showed a significant correlation with 
muscle strength (r = − 0.41 to 0.75; p < 0.05). Non-signifi-
cant correlations between body-size variables and muscle 
strength tests are shown in Additional file 1: Supplement 
B.

Allometric exponents were proposed for those body-
size variables that showed a significant relationship with 
muscle strength (Table  2). Linear regressions to obtain 
allometric exponents are shown in Additional file 1: Sup-
plement C. All regressions were significant to explain 
muscle strength (p < 0.05), with adjusted R2 ranging from 
0.39 to 0.61. The regression coefficients (β) obtained for 
each body-size variable represent the allometric expo-
nents obtained. For HGS, the allometric exponents of 
triceps, pectoral, abdominal and thigh skinfolds were 
discarded because the interaction terms were statistically 
significant (p < 0.05) and have accentuated multicollinear-
ity (VIF > 10). The remaining allometric exponents were 
used to perform normalization (for example, 1RM/body 
mass0.44).

The sex-specific cut-off points proposed for HGS, 1RM 
and PT (non-normalized, ratio standard/muscle qual-
ity and allometric scaling) to identify muscle weakness 
are presented in the Additional file 1: Supplement D. In 

Table 1  Allometric exponents (b) proposed in previous studies

HGS handgrip strength, 1RM one maximum repetition measurement for knee 
extensors, PT isokinetic knee extension peak torque at 60°/s

Authors Normalized muscle strength for 
body-size variable

Jaric [56] General muscle strength/body mass0.67

Foley et al. [23] HGS/body mass0.40

Pua [25] HGS/body mass0.63

Maranhão Neto et al. [24] HGS/body mass0.31

HGS/height1.84

Abdalla et al. [26] 1RM/body mass0.69

1RM/body mass0.96

Davies and Dalsky [28] PT/body mass0.67

PT/body mass0.72

PT/body mass0.74

Segal et al. [39] PT/body mass*height0.97
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Table 2  Descriptive analysis and significant correlations of muscle strength with body-size variables in older men and women (n = 94)

Variables Older Men (n = 29) Older Women (n = 65) Correlation (r) with Muscle 
Strength

M 95% CI SD M 95% CI SD HGS (kg) Knee Extension

LL UL LL UL 1RM (kg) PT (Nm)

Age (years) 71.2 68.5 73.9 7.1 69.7 68.2 71.2 6.1

Mini-Mental State Examination (0–19) 17.6 16.9 18.2 1.8 17.4 16.9 17.8 1.8

Body-size variables

Anthropometry

 Body mass (kg) 73.0 67.7 78.3 13.9 66.9 64.0 69.8 11.6 0.37† 0.39† 0.40†

 Height (m) 1.7 1.6 1.7 0.1 1.6 1.5 1.6 0.1 0.71† 0.62† 0.68†

Circumferences (cm)

 Forearm 26.0 25.2 26.8 2.0 23.8 23.3 24.4 2.2 0.50† 0.40† 0.46†

 Calf 35.8 34.4 37.1 3.5 34.8 34.1 35.5 2.9 0.34* 0.37† 0.37†

 Chest 97.8 94.3 101.4 9.4 93.2 91.3 95.1 7.7 0.26* 0.32* 0.36†

 Waist 92.1 87.8 96.5 11.4 86.5 84.0 89.0 10.0 0.26* 0.30*

Skinfold thickness (mm)

 Triceps 15.2 12.9 17.5 6.0 25.8 24.1 27.4 6.7 –0.39† –0.22* –0.25*

 Biceps 8.0 6.7 9.4 3.5 15.4 14.0 16.7 5.4 –0.40† –0.28* –0.31*

 Midaxillary 18.5 15.5 21.5 7.8 23.9 22.2 25.6 6.9 –0.26*

 Pectoral 16.8 14.7 18.9 5.5 14.6 13.0 16.2 6.4 0.21*

 Suprailiac 19.7 15.8 23.5 10.1 29.7 27.8 31.7 7.8 –0.29*

 Abdominal (vertical) 26.2 23.1 29.3 8.1 33.7 31.5 35.9 8.8 –0.22*

 Thigh (midline) 17.9 15.0 20.8 7.6 32.1 29.5 34.8 10.7 –0.35* –0.27* –0.38†

 Medial calf 11.8 9.3 14.3 6.6 23.8 21.9 25.7 7.6 –0.41† –0.28* –0.33*

Bone breadths (mm)

 Biacromial 39.9 38.9 41.0 2.8 37.1 36.6 37.6 2.1 0.63† 0.58† 0.60†

 Bitrochanteric 33.7 33.1 34.3 1.7 33.4 32.8 34.0 2.3 0.20* 0.22*

 Ankle (bimalleolar) 7.0 6.8 7.2 0.5 6.3 6.2 6.4 0.4 0.59† 0.47† 0.52†

 Elbow 6.7 6.5 6.9 0.5 5.8 5.7 6.0 0.5 0.53† 0.40† 0.44†

 Wrist 5.7 5.6 5.9 0.4 5.1 5.0 5.1 0.4 0.52† 0.37† 0.44†

 Chest 30.9 29.9 31.9 2.6 27.8 27.4 28.3 1.8 0.58† 0.49† 0.59†

Segment lenghts (cm)

 Knee height 53.5 52.4 54.5 2.7 49.5 49.0 50.0 2.1 0.62† 0.55† 0.58†

 Half arm span 87.3 85.5 89.2 4.8 80.8 79.8 81.7 3.8 0.71† 0.62† 0.58†

Body indexes

Derived from anthropometry

 Body mass*height (kg*m) 123.3 112.6 134.1 28.2 104.7 99.8 109.7 20.0 0.49† 0.49† 0.52†

 SA (m2) 1.9 1.8 1.9 0.2 1.7 1.7 1.8 0.2 0.47† 0.48† 0.50†

 MAMC (cm) 24.2 23.0 25.3 2.9 21.9 21.3 22.5 2.6 0.45† 0.39† 0.45†

 CAMA (cm2) 37.1 32.7 41.6 11.7 32.2 29.9 34.5 9.2 0.37† 0.33† 0.40†

 AFA (cm2) 16.3 14.0 18.6 6.0 22.9 21.3 24.6 6.6 –0.23*

 FFM(LEAN et al. [44]) (kg) 52.1 49.6 54.6 6.6 37.1 36.0 38.2 4.6 0.75† 0.66† 0.67†

 Fat mass(LEAN et al. [44]) (kg) 20.9 17.7 24.0 8.2 29.8 27.9 31.7 7.8 –0.22*

Derived from body composition

 Left arm LST (kg) 2.4 2.1 2.6 0.6 1.5 1.4 1.6 0.3 0.72† 0.62† 0.66†

 Right arm LST (kg) 2.8 2.5 3.0 0.6 1.8 1.7 1.9 0.4 0.72† 0.61† 0.60†

 Left leg LST (kg) 7.7 7.1 8.3 1.6 5.5 5.3 5.8 1.0 0.67† 0.64† 0.64†

 Right leg LST (kg) 8.0 7.4 8.6 1.6 5.7 5.4 5.9 1.0 0.70† 0.64† 0.65†

 Arms LST (kg) 5.1 4.7 5.6 1.2 3.3 3.2 3.5 0.7 0.74† 0.63† 0.64†

 Legs LST (kg) 15.7 14.6 16.9 3.1 11.2 10.7 11.6 1.9 0.69† 0.65† 0.66†
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the same supplement there are also presented correla-
tions between muscle strength and body size (body mass, 
height and body-size variable used in normalization).

Non-normalized HGS, 1RM and PT cut-off points 
to identify muscle weakness were not adequate for 
both sexes or because they did not present AUC ≥ 0.70 
(p < 0.05) or because they had a significant association 
with body size (r > 0.30; p < 0.05) (Additional file 1: Sup-
plement D).

Table  3 shows the cut-off points based on the ratio 
standard/muscle quality and allometric scaling classified 
as adequate.

A comparison of the most accurate ROC curves is 
presented in Fig.  2 to support the decision for the best 
cut-off point between non-normalized, ratio standard/
muscle quality and allometric scaling of HGS and lower 
limbs strength (1RM and PT) for each sex.

For men, there were no differences in accuracy (AUC) 
to identify functional limitation between absolute muscle 
strength, normalized by ratio standard/muscle quality or 
by allometric scaling (p > 0.05; Fig.  2a–c). However, the 
absolute muscle strengths (HGS, 1RM and PT) previ-
ously indicated great dependence (r > 0.30) on body size 
(Additional file  1: Supplement D), suggesting the need 
for normalization to avoid errors in the classification of 
weakness. The normalized muscle strength increased the 
AUC and made it possible to classify muscle weakness of 
older adults with extreme body sizes, independently.

For women, only after normalizing muscle strength the 
AUC values perform acceptable to identify functional 
limitation (AUC > 0.70; Fig. 2d, e). The exception was PT, 
when the absolute values already had adequate accuracy 
(AUC > 0.70), although without the desirable independ-
ence of body size. All the normalizations increased (‡) the 
AUC (p < 0.001).

Discussion
Cut-off points based on upper and lower limbs muscle 
strength were proposed to identify muscle weakness in 
older adults of both sexes. The non-normalized cut-off 
points for HGS and lower limbs strength were signifi-
cantly associated with body size, which involves biases to 
assess older adults with extreme body size (e.g., heavy or 
short). After normalizing HGS and lower limbs strength 
by the ratio standard/muscle quality or by the allom-
etry, the association with body size was no longer rel-
evant. In addition, for women, the accuracy to predict 
mobility limitation/muscle weakness from normalized 
muscle strength cut-off points become acceptable when 
compared to non-normalized strategy. In men, muscle 
strength normalization did not increase accuracy. How-
ever, all normalized models of both sexes avoided biases 
in the assessment of muscle weakness/mobility limita-
tion, to isolate the natural interdependence between 
muscle strength and body size [24].

Table 2  (continued)

Variables Older Men (n = 29) Older Women (n = 65) Correlation (r) with Muscle 
Strength

M 95% CI SD M 95% CI SD HGS (kg) Knee Extension

LL UL LL UL 1RM (kg) PT (Nm)

 ASM (kg) 20.9 19.3 22.5 4.2 14.5 13.9 15.1 2.5 0.72† 0.65† 0.66†

 ASM/height2 (kg/m2) 7.3 7.0 7.7 1.0 6.0 5.7 6.2 0.9 0.55† 0.51† 0.48†

 FFM(Baumgartner et al. [46]) (kg) 54.3 51.3 57.3 7.7 45.5 44.0 47.0 6.1 0.60† 0.55† 0.57†

 FFM(DXA) (kg) 51.5 47.9 55.0 9.4 38.8 37.4 40.3 5.8 0.68† 0.59† 0.61†

 Fat mass(DXA) (kg) 21.5 18.8 24.2 7.1 28.1 26.3 29.9 7.2 –0.20*

Mobility

 Six-minute walk test (6MWT) 464.7 431.1 498.3 88.3 412.7 389.9 435.5 92.0

 Functional limitation (6MWT < 400 m); % 24.1% 38.5%

Muscle strength

 HGS (kg) 36.4 33.1 39.7 8.6 24.1 23.0 25.2 4.5

 1RM (kg) 66.8 56.9 76.7 26.0 40.8 36.9 44.8 15.9

 No. of reps to estimate 1RM 7.2 6.3 8.1 2.3 6.6 6.0 7.2 2.4

PT (Nm) 119.8 102.4 137.2 45.6 73.2 66.8 79.6 25.9

M mean, CI confidence interval, LL lower limit, UL upper limit, SD standard deviation, HGS handgrip strength, 1RM one maximum repetition measurement for knee 
extensors, PT isokinetic knee extension peak torque at 60º/s, Nm Newton meter, SA human body surface area, MAMC mid-arm muscle circumference, CAMA corrected 
arm muscle area, AFA arm fat area, FFM fat-free mass, LST lean soft tissue, ASM appendicular skeletal muscle mass, DXA Dual-energy X-ray absorptiometry

*p < 0.05 and †p < 0.001 (statistically significant correlation)
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Table 3  Adequate cut-off points (AUC ≥ 0.70 simultaneously in both sexes and r ≤ 0.30 with body size) of handgrip strength (HGS), 
one maximum repetition measurement for knee extensors (1RM) and isokinetic knee extension peak torque at 60°/s (PT) to identify 
muscle weakness

Variable Unit Men (n = 29) Women (n = 65)

AUC​ Cut-off point (≤) Sens (%) Spe (%) AUC​ Cut-off point (≤) Sens (%) Spe (%)

HGS (kg)
/Forearm circumference (cm) 0.74* 1.33 86 59 0.70* 1.04 84 58

1RM (kg)
/Body mass (kg) 0.77* 0.85 86 68 0.76† 0.54 68 78

/Forearm circumference (cm) 0.75* 2.16 86 77 0.70* 1.38 60 75

/Calf circumference 0.74* 1.65 86 77 0.70* 1.06 72 68

/Chest circumference 0.76* 0.64 86 73 0.71* 0.4 72 65

/Waist circumference 0.78* 0.73 100 59 0.72* 0.37 60 80

/Triceps skinfold (mm) 0.81† 4.22 86 68 0.70* 1.40 60 75

/Bitrochanteric breadth 0.73* 1.72 86 77 0.70* 1.16 76 60

/Bimalleolar breadth 0.73* 8.77 86 77 0.70* 5.77 76 65

/Elbow breadth 0.73* 9.36 86 73 0.70* 6.57 76 63

/SA (m2) 0.75* 31.6 86 77 0.72* 21.2 72 68

/MAMC (cm) 0.77* 2.42 86 73 0.72* 1.54 64 75

/CAMA (cm2) 0.71* 2.03 100 41 0.73* 0.90 52 93

/FFM(Lean et al. [44]) (kg) 0.76* 1.11 86 77 0.72* 1.00 72 68

/FFM(Baumgartner et al. [46]) (kg) 0.78* 1.13 83 73 0.75† 0.83 76 64

/Body mass0.44 (kg) 0.75* 9.04 86 77 0.71* 6.03 76 63

/Body mass0,67 (Jaric [56]) 0.78* 3.40 86 77 0.73† 2.28 76 65

/Body mass0.96 (Abdalla et al. [53]) 0.77* 1.00 86 68 0.75† 0.45 44 100

/Body mass0.69 (Abdalla et al. [53]) 0.78* 3.06 86 77 0.73* 1.48 44 98

/Calf circumference1.10 (cm) 0.75* 1.14 86 77 0.71* 0.70 68 73

/Bimalleolar breadth1.20 (mm) 0.71* 6.01 86 68 0.70* 3.93 76 65

/(Body mass*height)0.48 (kg*m) 0.75* 5.83 86 77 0.72* 4.06 76 65

/SA0.93 (m2) 0.75* 33 86 77 0.72* 22.7 76 65

/FFM0.88
(Lean et al. [44]) (kg) 0.75* 1.77 86 77 0.71* 1.53 76 65

/FFM0.67
(Baumgartner et al. [46]) 0.76* 3.94 83 77 0.72* 2.91 76 64

PT (Nm)
/Height (m) 0.93† 54.1 86 95 0.74† 44.1 64 75

/Knee height (cm) 0.94† 1.83 100 86 0.75† 1.44 68 73

/SA (m2) 0.94† 56.9 100 82 0.81† 36.3 64 88

/FFM(Lean et al. [44]) (kg) 0.93† 1.79 86 95 0.81† 1.84 76 80

/Left leg LST (g) 0.82† 0.015 100 55 0.76† 0.012 68 80

/Right leg LST 0.77* 0.015 100 50 0.78† 0.013 76 78

/Legs LST 0.81* 0.0063 71 82 0.77† 0.0065 76 78

/ASM (kg) 0.81* 4.66 71 86 0.77† 5.01 76 78

/FFM(Baumgartner et al. [46]) 0.93† 1.63 83 95 0.85† 1.60 88 77

/FFM(DXA) 0.84† 2.08 100 59 0.79† 1.89 76 75

/Body mass0.67 (Davies and Dalsky [28]) (kg) 0.93† 5.06 86 95 0.82† 3.71 68 88

/Body mass0.72 (Davies and Dalsky [28]) 0.94† 4.1 86 95 0.82† 3.14 72 85

/Body mass0.74 (Davies and Dalsky [28]) 0.93† 3.77 86 95 0.82† 2.87 72 85

/Body mass0.67 (Jaric [56]) 0.93† 5.06 86 95 0.82† 3.71 68 88

/Height3.27 (m) 0.86† 19.2 100 77 0.74† 17.4 72 65

/Knee height1.82 (cm) 0.90† 0.068 100 86 0.74† 0.053 64 75

/Half arm span1.62 0.88† 0.076 100 73 0.75† 0.066 84 58

/Biacromial breadth2.15 (mm) 0.82† 0.038 86 68 0.77† 0.03 76 73
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To the best of our knowledge, this is the first study to 
propose muscle weakness cut-off points for the HGS and 
PT allometrically adjusted in older adults. In a previous 
study, 1RM was allometrically adjusted for body mass 
[26], but not according to all other potential body size 

variables. Indeed, we expanded the number of variables 
that can be used to normalize 1RM with allometry (n = 8) 
in order to augment model´s accuracy for identifying 
muscle weakness regardless of extreme body sizes. Other 
studies proposed muscle weakness cut-off points with 

Table 3  (continued)

Variable Unit Men (n = 29) Women (n = 65)

AUC​ Cut-off point (≤) Sens (%) Spe (%) AUC​ Cut-off point (≤) Sens (%) Spe (%)

/Bimalleolar breadth1.54 0.81* 5.04 86 73 0.80† 4.64 92 60

/(Body mass*height)0.43 (kg*m) 0.94† 13 100 82 0.80† 10.5 84 65

/SA0.83 (m2) 0.94† 53.8 86 95 0.80† 50 84 65

/Left leg LST0.43 (g) 0.92† 2.26 100 77 0.77† 1.83 76 70

/Right leg LST0.48 0.90† 1.39 100 73 0.78† 1.16 80 70

/Legs LST0.47 0.92† 1.07 100 73 0.77† 0.87 76 70

Dependent variable (primary outcome): functional limitation (6MWT < 400 m)

AUC​ area under the curve, p significance, Sens sensibility, Spe specificity, SA human body surface area, MAMC mid-arm muscle circumference, CAMA corrected arm 
muscle area, FFM Fat-free mass, LST lean soft tissue, ASM appendicular skeletal muscle mass, DXA Dual-energy X-ray absorptiometry, 6MWT six-minute walk test

*p < 0.05 and †p < 0.001 (statistically significant AUC)

Fig. 2  Accuracy comparison between non-normalized, ratio standard/muscle quality and allometric scaling of muscle weakness cut-off points 
of HGS and lower limbs strength (1RM and PT) in older men (letters a, b, c) and older women (letters d, e, f ). *p < 0.05 and †p < 0.001 (statistically 
significant AUC). ‡p < 0.05 (greater than the AUC of non-normalized muscle strength). §p < 0.05 (greater than the AUC of the allometric scaling). 
Dependent variable (primary outcome): functional limitation (6MWT < 400 m). HGS handgrip strength; 1RM one maximum repetition measurement 
for knee extensors, PT isokinetic knee extension peak torque at 60º/s, 6MWT six-minute walk test
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HGS normalized by ratio standard (body mass or BMI) 
[18, 61, 62] or stratified by BMI quartiles [7]. There are 
also muscle weakness cut-off points for PT normalized 
by body mass [19]. However, these studies did not com-
pare the accuracy of normalized with non-normalized 
muscle strength to identify muscle weakness. Further-
more, they did not explore other body-size variables to 
normalize muscle strength.

Previous studies have proposed allometric exponents 
to normalize muscle strength, including HGS [23–25], 
1RM [26], PT [28, 39], and they are comparable with the 
ones found in the present study. Curvilinear (allometric) 
relationship variables is confirmed when allometric coef-
ficient (b) is between 0.00 and 0.99 [63], while the linear 
relationship is characterized when the exponent is ≥ 1.00 
[63]. In the literature, body mass generally presents an 
allometric relationship with muscle strength indepen-
dently of the test (HGS, 1RM or PT; Table  1), confirm-
ing our findings (Additional file 1: Supplement C), when 
b exponents were 0.22 (HGS), 0.44 (1RM) and 0.37 (PT). 
Contrarily, height tends to have a linear relationship 
(b ≥ 1.00) with muscle strength [24], what was also con-
firmed by our proposed allometric exponents (Additional 
file 1: Supplement C), that were between 1.87 and 3.27.

Some strengths of our study are noteworthy. We pro-
posed muscle weakness cut-off points for isokinetic 
dynamometer, considered as a “gold standard” resource 
to assess lower limbs strength. The estimated 1RM 
obtained with submaximal repetition protocol and the 
HGS are valid for older adults, even for those with mus-
cle weakness [53, 64]. An extensive number of body-size 
variables (n = 49) were tested in our study, expanding 
the possibilities to promote the normalization of perfor-
mance in muscle strength tests. Furthermore, regardless 
of the chosen muscle strength test to evaluate weak-
ness, our findings can be applied with sufficient accu-
racy (AUC > 0.70) both for scientific research (PT) and 
population-based monitoring (HGS and 1RM). Never-
theless, this study is not without limitations. The indi-
vidual muscle strength decline along aging may have 
been underestimated with the cross-sectional design. The 
small and local sample size of our study, requiring cau-
tion to extrapolate these findings inferentially to other 
populations. Another limitation is the utilization of open 
kinetic chain test in the case of 1RM in a leg extension 
machine, a movement far to the natural comportment 
during daily living. Our suggestion for future studies is 
to establish allometric exponents and cut-off points for a 
close kinetic chain exercise like leg press or squat, which 
require movements more closely associated with daily 
live.

We found greater accuracy (AUC) for normalized 
lower limbs strength (isokinetic dynamometer and leg 

extension machine) than manual dynamometer (normal-
ized upper extremity strength), usually adopted to predict 
mobility limitations/muscle weakness [8]. However, the 
isokinetic dynamometer is expensive and generally more 
available in terms of research. Even though, our normal-
ized models are also applicable in clinical practice from 
manual dynamometers (widely available in geriatric envi-
ronments) and leg extension machines (available in most 
fitness centers, adequate environment for intervention 
against aged-related muscle weakness) [35]. The assess-
ment of HGS and 1RM and proper classification of mus-
cle weakness amongst older adults should be frequent in 
clinical practice to better target health expending, avoid-
ing unnecessary expenditures. Future research should 
observe if proposed allometric exponents can be utilized 
to normalize muscle strength for different older adults’ 
population, with other ethnicity/race characteristics.

As an applied example to avoid false positive diagno-
sis for muscle weakness, we hypothesize one older man 
with extreme lower values of body mass (42 kg), 1.57 m of 
height, who performed PT of 85.2 Nm. If we consider our 
absolute cut-off point (≤ 85.4 Nm), this older man has 
muscle weakness confirmed. However, when considered 
the normalized PT/([body mass*height]0.43), the adjusted 
value (14.1 Nm/kg*m) is above of the cut-off point (13.0 
Nm/kg*m; Table  3). Normalization would also avoid 
false negative cases, for large body size of older adults. 
For example, if an older woman with 90  kg performs 
1RM of 38.2  kg and considering our absolute cut-off 
point (≤ 38.1 kg), this older woman does not have weak-
ness. However, when considered the normalized (1RM/
body mass0.67), the adjusted value (1.87  kg/kg) is below 
of the cut-off point (2.28 kg/kg; Table 3), characterizing 
weakness and a false negative case if non-normalized 
cut-off point were considered. The mistaken framing of 
false weakness cases could greatly impact the financial 
resources in the health and older people care systems. 
Especially in low- and middle-income countries, where 
these resources are scarcer.

Conclusion
Upper and lower limbs muscle weakness cut-off points 
standardized according to body size were proposed 
for older adults of both sexes. The normalization has 
increased accuracy for identify women with mus-
cle weakness; but not in men, whose absolute muscle 
strength values have an acceptable accuracy. However, 
normalization made muscle strength independent of 
body size, confirming our hypothesis and prevent-
ing bias in the evaluation of older adults with extreme 
body size (e.g., very low or very heavy). Forty-nine valid 
models were proposed for older adults of both sexes, 
with different possibilities of body’s normalization of 
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muscle strength, which broadens the interpretation of 
muscle strength with less risk of attributing a false-neg-
ative/positive diagnosis to muscle weakness.
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