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Abstract 

The physiological effects of physical exercise are ubiquitously reported as beneficial to the cardiovascular and 
musculoskeletal systems. Exercise is widely promoted by medical professionals to aid both physical and emotional 
wellbeing; however, mechanisms through which this is achieved are less well understood. Despite numerous ben-
eficial attributes, certain types of exercise can inflict significant significant physiological stress. Several studies docu-
ment a key relationship between exercise and immune activation. Activation of the innate immune system occurs in 
response to exercise and it is proposed this is largely mediated by cytokine signalling. Cytokines are typically classified 
according to their inflammatory properties and evidence has shown that cytokines expressed in response to exercise 
are diverse and may act to propagate, modulate or mitigate inflammation in musculoskeletal health. The review sum-
marizes the existing literature on the relationship between exercise and the immune system with emphasis on how 
exercise-induced cytokine expression modulates inflammation and the immune response.
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Summary box
What’s already known

� It is widely recognised that regular exercise promotes 
healthy living in terms of a person�s physical and psy-
chological wellbeing.

� �e relationship between exercise and the immune 
system provides an opportunity to explore the com-
plex interaction between basic physiological and 
immunological mechanisms in musculoskeletal 
health and disease.

What this review shows

� Activation of the innate immune system occurs in 
response to exercise and it is proposed this is largely 
mediated by cytokine signalling.

� Emphasises how exercise-induced cytokine expres-
sion modulates in�ammation and the immune 
response.

� Discusses how exercise induced cytokine production 
is crucial in maintaining musculoskeletal health and 
how it is altered in disease

Background
A prima facia case for the benefits of physical exercise is 
now largely undisputed [1]. It is widely recognised that 
regular exercise promotes healthy living in terms of a 
person’s physical and psychological wellbeing; however, 
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the mechanisms by which this is achieved are less well 
understood. Exercise induces considerable physiological 
change in the immune system and can be considered an 
external stress akin to surgery, trauma or sepsis, in the 
way it induces hormonal and immunological responses, 
just on a much lesser magnitude [2, 91, 92]. The rela-
tionship between exercise and the immune system pro-
vides an opportunity to explore the complex interaction 
between basic physiological and immunological mecha-
nisms in musculoskeletal health and disease.

The immunological changes of exercise can be 
observed across a range of immune cells and pathways. 
Exercise has been shown to affect lymphocyte sub-
populations, natural killer cell (NK) cell activity, neu-
trophil functioning and leukocyte trafficking to varying 
degrees [2]. Importantly, there is a consistent change in 
the human cytokine profile in response to exercise that 
is thought to be influential on musculoskeletal health [3].

Cytokines are a diverse family of intracellular signal-
ling molecules that regulate the immune system in both 
health and disease. A balance between pro-inflammatory 
and anti-inflammatory cytokines is essential in main-
taining tissue homeostasis. Dysregulation of either cre-
ates the potential for significant immunopathology [4]. 
Therefore, cytokine networks must be tightly regulated 
in order to limit host damage whilst maintaining immu-
nity. In the context of exercise, it is important to consider 
the impact exercise has on cytokine production and the 
subsequent effect on the musculoskeletal system. This 
review will explore the physiological changes in cytokine 
production induced by exercise with a view to exploring 
the implications of this in the context of musculoskeletal 
health and disease.

Cytokines in acute exercise
The first study suggesting an exercise induced cytokine 
response was published in 1983 by Cannon and Kluger 
[5]. In this study, plasma obtained from human subjects 
following exercise was injected intra-peritoneally into 
rats resulting in elevated rectal temperature. Samples 
obtained prior to exercise failed to induce this response. 
The pyrogenic molecule within the sample was isolated 
and found to be heat denaturable (suggesting it was likely 
to be a protein) and 15kDA (consistent with the molecu-
lar weight of cytokines). As part of this study, human leu-
kocytes obtained after exercise were incubated in  vitro. 
These leukocytes released a factor into the medium that 
also elevated body temperature in rats [5]. These results 
suggested that an endogenous pyrogen was released in 
response to human exercise—what we now identify as 
‘cytokines’.

It is important to note that whilst cytokines are pro-
duced throughout the body, in the context of exercise, 

the primary source of cytokine is the skeletal muscle 
itself. Skeletal muscle is increasingly recognised as a 
‘secretory organ’ and produces cytokines in response to 
contraction [6, 7]. Over 3000 of these cytokines, termed 
‘myokines’, are produced by myocytes and include inter-
leukin 6 (IL-6), IL-7, IL-15 and myostatin, among others 
[7, 90]. Myokines act primarily in an autocrine and par-
acrine fashion locally on skeletal muscle, but may also 
act in an endocrine fashion by communicating with a 
variety of other tissue types [8]. The finding that skeletal 
muscle is in fact a secretory organ has generated a new 
area of research within the exercise field. Researchers 
have long aimed to find an ‘exercise factor’ which links 
skeletal muscle contraction with the metabolic changes 
associated with exercise [9]. The identification of skeletal 
muscle-derived cytokines could represent the ‘exercise 
factor’ they were looking for and account for the exercise-
induced immune and metabolic changes. The following 
sections will detail the individual cytokines thought to 
play a key role in the immunology of acute exercise.

IL‑6
The response of IL-6 to exercise has been studied exten-
sively in the scientific community and considered the 
pivotal cytokine in exercise physiology [3, 11–13]. The 
levels of IL-6 increase exponentially (up to 100-fold) in 
response to exercise and decline rapidly in the period 
following exercise [3]. The degree of elevation of IL-6 is 
dependent on multiple factors, such as exercise intensity, 
duration of exercise, and individuals exercise capacity 
[13].

Role of IL‑6 in inflammation and exercise
IL-6 is a pleiotropic cytokine with a broad range of func-
tions in immunoregulation, haematopoiesis and inflam-
mation [14]. It was initially thought to be an important 
mediator involved solely in the propagation of a pro-
inflammatory state. IL-6 mediates pro-inflammatory 
effects in both the innate and adaptive immune response. 
IL-6 attracts neutrophils to the site of damage and is 
involved in B and T-cell differentiation [15]. In addition, 
IL-6 also inhibits the differentiation of CD4 + /T-cells 
into T-regulatory cells, thereby limiting the ‘brakes’ on 
inflammation, helping to propagate the inflammatory 
state and prevent subsequent resolution. It is involved 
in the secretion of stress hormones during an inflamma-
tory response, through both acting on the hypothalamus 
to promote the release of corticotrophin releasing hor-
mone and also acting directly on the adrenal cortex and 
medulla to release cortisol and catecholamines respec-
tively [93, 94]. Furthermore, IL-6 may also have some role 
in the secretion of the classic ‘acute phase proteins’ from 
the liver, including C-reactive protein [94, 95]
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Despite its well-characterised pro-inflammatory role, 
IL-6 exerts an anti-inflammatory effect in the context 
of exercise [16]. It is proposed that IL-6 mediates its 
anti-inflammatory effects through the induction of anti-
inflammatory cytokines, namely IL-10 and IL-1Ra [10]. 
From a molecular perspective, it has been suggested that 
the contrasting actions of IL-6 can be explained through 
its cellular signalling. It is suggested that its pro-inflam-
matory effects are mediated by the soluble IL-6 receptor, 
while its anti-inflammatory effects are mediated by mem-
brane bound receptors, Gp130 [14].

The anti-inflammatory effect of IL-6 can also be seen 
through its inhibitory effect on TNF-α. It has been 
long-known and shown experimentally that IL-6 inhib-
its TNF-α production in  vitro in both cultured human 
monocytes and in monocytic cell lines [17]. This relation-
ship has been verified in IL-6 ‘knockout mice’ and ‘wild 
type mice’ treated with anti-IL-6, which have markedly 
elevated circulating levels of TNF-α [18]. This indicates 
that IL-6 is involved in the regulation of TNF-α levels. 
In human studies, it was found that the administration 
IL-6 impairs the TNF-α response. In healthy individuals, 
when Escherichia coli (E. coli) endotoxin is administered, 
an elevation of TNF-α is observed. However, IL-6 infu-
sion inhibits the endotoxin-induced TNF-α response. 
[19] In combination, these studies serve to confirm the 
effect of IL-6 on TNF-α inhibition, supporting, IL-6 as 
the primary driver of the anti-inflammatory environment 
associated with exercise.

Secretion and role as a myokine
Prior to the discovery of muscle-derived ‘myokines’, it was 
proposed that the elevation of systemic IL-6 was a cellu-
lar immune response to muscular damage during exer-
cise [10] [20]. As monocytes are the primary source of 
IL-6 in the immune response to sepsis, monocytes were 
studied in a laboratory setting to determine their role in 
the cytokine response to exercise. It was found that the 
concentration of IL-6 mRNA in monocytes did not ele-
vate following exercises [21], demonstrating that eleva-
tion of IL-6 observed in exercise was in fact not derived 
from traditional circulating immune cells (Table 1).

It has subsequently been demonstrated that IL-6 is 
produced in skeletal muscle itself, as opposed to periph-
eral immune cells. Exercise activates the transcription 
of the IL-6 gene in contracting skeletal muscle [6] with 
IL-6 protein expressed transiently in contracting muscle 
fibres [22] and released into the circulation from skeletal 
muscle during exercise [23, 24]. By comparing the plasma 
concentration of IL-6 in a single exercising leg with the 
systemic concentration of IL-6, it was found that the con-
centration of IL-6 was 17-times higher in the exercising 

leg than in the arterial circulation [3]. This confirmed the 
status of IL-6 as a myokine in the context of exercise.

Furthermore, the suggestion that the elevation of IL-6 
was a response to damage was also refuted. It was found 
that the difference between IL-6 concentration following 
both ‘damaging’ (eccentric) and ‘non-damaging’ (concen-
tric) muscular contractions did not differ significantly 
[10, 25]. This finding, in combination with the fact that 
exercise does not produce a cellular immune response, 
demonstrates that the IL-6 response to exercise is a phys-
iological response, rather than a damage phenomenon.

IL‑6 and glucose metabolism
While IL-6 is primarily involved in creating an anti-
inflammatory environment during exercise itself, IL-6 
also has distant effects. These effects may explain some 
of the broad benefits observed with exercise and allow 
conclusions to be drawn about the role of IL-6 in a wider 
biological context.

It has been found that IL-6 exerts its action both locally 
(within the muscle) and when released into the circula-
tion, in a hormone-like fashion in distant organs. In 
skeletal muscle, IL-6 plays an important role in muscle 
glucose metabolism during exercise. IL-6 is upregulated 
in response to low glycogen levels [6]. It has therefore 
been suggested that IL-6 acts as an ‘energy sensor’ during 
exercise—upregulating its expression in response to low 
muscle glycogen [24].

Alongside its local actions, IL-6 acts on the liver and 
adipose tissue in an endocrine fashion. It has been pro-
posed that IL-6 increases hepatic glucose production 
during exercise and increase lipolysis in adipose tis-
sues [26]. These distant effects of IL-6 are important in 
the maintenance of homeostatic glucose concentra-
tions in the face of increased glucose uptake by skeletal 
muscle [27]. These findings can still be replicated when 
other known inducers of hepatic gluconeogenesis are 
accounted for [28].

In addition to its role in glucose metabolism, IL-6 is 
also involved in the generation of alternative energy 
sources during exercise. IL-6 acts to increase AMP-acti-
vated protein kinase (AMPK) activity in skeletal muscle 
[29]. The AMPK pathway stimulates fatty acid oxidation 
and increases glucose uptake by skeletal muscle cells [30]. 
IL-6 is also involved in the enhancement of glucose trans-
porter type 4 (GLUT4) expression. GLUT4 is an induc-
ible glucose receptor and provides an alternative energy 
source for muscle when glycogen sources are scarce. 
Together, these pathways highlight the essential role the 
upregulation of IL-6 plays in skeletal muscle metabolism 
during exercise [30].

It is important to note that these metabolism studies 
focus on the action of IL-6 during muscular contraction 
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during exercise. In contrast, infusions of recombinant 
IL-6 in humans at rest fail to induce any changes in 
glucose metabolism, implying that an additional, uni-
dentified factor is needed for IL-6 to influence glu-
cose metabolism [31]. Recently, it has been shown that 
exercise-induced visceral fat loss in obese people is 
inhibited by IL-6 receptor blockade with tocilizumab, 
indicating this process is mediated dependent on IL-6 
signalling [32]. These studies demonstrate the complex-
ity of the role of IL-6 in exercise and suggests an area 
for further research in fully establishing its role in mus-
cle and general metabolism.

A diagrammatic representation of the role of the IL-6 
in muscle metabolism is shown in Fig. 1.

These anti-inflammatory and metabolic effects of IL-6 
may provide a mechanism to help explain the well docu-
mented beneficial effects of exercise in health and why 
exercise reduces the susceptibility to, or improves the 
symptoms of, inflammatory conditions [33].

TNF‑α and IL‑1β
TNF-α and IL-1β have both been studied in the con-
text of exercise with a view to understanding the 
immunological environment of exercise. Both TNF-α 
and IL-1β are considered to be classic pro-inflamma-
tory cytokines and are released in response to cellular 
damage. Through their action in vivo, they ultimately 

Table 1 Summary of the roles of key cytokines in relation to exercise

Upwards arrow = upregulated after exercise. Sideways arrow = no change with exercise. More than one arrow indicates conflicting results between studies. Compiled 
with information from [5, 6, 10, 13, 15–17, 19, 22, 35]
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stimulate a pro-inflammatory response through the 
activation of immune cells and increasing systemic 
prostaglandins [34].

A rise in the concentration of TNF-α and IL-1β is 
not seen in moderate exercise, although they have 
been shown to increase in prolonged or strenuous 
exercise [35]. After a marathon race, the concentration 
of TNF-α and IL-1β was shown to increase twofold. 
By comparison, the concentration of anti-inflamma-
tory IL-6 increased 50-fold [36]. It can therefore be 
concluded that whilst strenuous exercise induces an 
increase in the pro-inflammatory cytokines, TNF-α 
and IL-1β, it is largely counteracted by the induction of 
anti-inflammatory cytokines leading to an overall anti-
inflammatory response.

IL‑10 and IL‑1Ra
Evidence has shown that circulating levels of both inter-
leukin 10 (IL-10) and IL-1Ra both rise in the period fol-
lowing exercise [10] and their release is likely upregulated 
in response to IL-6 [91, 96, 97]. IL-10 and IL-1Ra play a 
role in immune regulation and have also been implicated 
in contributing to the anti-inflammatory response to 
exercise.

IL-10 is considered a classic anti-inflammatory 
cytokine. It is proposed that IL-10 suppresses cytokines 
through both direct inhibition of the action of pro-
inflammatory cytokines, as well as by preventing cytokine 
synthesis [36]. Using post-translational mechanisms, 
IL-10 is able to block nuclear factor kappa-B (NF-κB), a 
transcription factor termed the ‘master regulator’ of the 

Fig. 1 Illustration of the actions of exercise-derived IL-6 on local and systemic metabolism
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immune system. In doing so, IL-10 prevents the genera-
tion of pro-inflammatory cytokines [37]. IL-10 inhibits a 
number of cytokines, including TNF-α and IL-1β, which 
is an important consideration in the context of exercise 
given that the levels of these cytokines are low despite 
elevated IL-6 [38].

In contrast to the action of IL-10, which influences 
a spectrum of cytokines, IL-1Ra mediates its effects on 
IL-1 alone. IL-1Ra inhibits signal transduction by com-
petitively binding to IL-1 receptor complex [39], thus 
preventing IL-1 binding and mediating its pro-inflamma-
tory effects.

IL‑4
IL-4 is an anti-inflammatory cytokine that may con-
tribute to the overall anti-inflammatory environment 
observed in exercise. IL-4 mediates its action primarily 
through the inhibition of Th1 cells, reduction of plasma 
IL-1β and upregulation of IL-1Ra [40].

The IL-4 response to exercise is less well character-
ised than the key mediators involved in exercise. Studies 
have shown no change in IL-4 expression in the immedi-
ate aftermath of exercise [40]. However, it has been sug-
gested that IL-4 may be involved in long-term muscular 
adaptations to exercise [41]. Through regular training, 
the expression of IL-4 within muscles has been found to 
increase over time following repeated individual exercise 
sessions [42]. This suggests that through regular training, 
muscles become more able to mediate some of their anti-
inflammatory profile through the upregulation of IL-4.

IL‑13
IL-13 has been studied alongside IL-4 due to the simi-
larity in the actions of both cytokines. Like IL-4, IL-13 
also inhibits T helper type 1 (Th1) cells, reduces plasma 
IL-1b and upregulates IL-1Ra [40]. Alongside its anti-
inflammatory role, it has been suggested that IL-13 has 
a distinct role in exercise and metabolism. Knudsen et al. 
report that endurance training in mice increases the local 
production of IL-13 within muscles, which, through the 
activation of downstream pathways, leads to improved 
muscle fatty acid utilisation and mitochondrial biogen-
esis [43]. This response was not observed in mice which 
lacked IL-13. The potential anti-inflammatory and meta-
bolic roles of IL-13 in exercise may provide an important 
focus for understanding the metabolic conditioning that 
can be observed through regular exercise. Further studies 
are required to investigate the relationship between exer-
cise and IL-13 expression in humans.

IL‑8
IL-8 belongs to the CXC family of chemokines and is 
primarily involved in neutrophil migration, as well as 

angiogenesis in vivo [44]. In the context of exercise, IL-8 
is produced locally within the muscle during exercise, 
with a minimal systemic IL-8 response only observed 
following intense exercise with an eccentric component 
owing to the associated pro-inflammatory response in 
this setting [12]. The role of IL-8 in angiogenesis is dis-
tinct from its pro-inflammatory actions [45]. IL-8 acts 
via the stimulation of CXC receptors 1 and 2(CXCR1 and 
CXCR2). CXRC2 is expressed by microvascular endothe-
lial cells and is responsible for IL-8 induced angiogenesis 
[46]. It has been shown that exercise induces CXCR2 
mRNA and protein expression in the vascular endothelial 
cells of muscles [47]. This suggests muscle-derived IL-8 
exerts its action locally, primarily to stimulate exercise-
induced angiogenesis through CXCR2.

IL‑15
IL-15 is a cytokine which acts as both an immunoregu-
latory mediator and as a growth factor. IL-15 is highly 
expressed in skeletal muscle following exercise [48] and 
has been shown to act in an anabolic fashion by increas-
ing the production of myosin within skeletal muscles 
[49]. This response has been shown to be up-regulated by 
strength training [12]. Interestingly, IL-15 has also been 
shown to play a role in the reduction of adipose tissue 
mass − a direct juxtaposition to its anabolic functions 
[50]. It has therefore been proposed that IL-15 acts to 
regulate the muscle to fat interactions which ultimately 
modulates the effects of exercise on the ratio of fat to lean 
body composition [51].

Overall cytokine profile of acute exercise
In addition to the levels of cytokines, the dynamic 
sequence following acute exercise also needs to be 
considered. The overall sequence of cytokine release 
in response to exercise involves an initial rise in the 
plasma concentration of IL-6, followed by a subsequent 
rise in the concentration of IL-1Ra, IL-10 and solu-
ble TNF-receptors (TNF-R) (Fig.  2). This sequence of 

Fig. 2 Illustration of circulating cytokines released in response to 
exercise
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pro-inflammatory cytokines followed by release of anti-
inflammatory cytokines is also seen in sepsis and acute 
inflammatory conditions but in contrast to sepsis, there 
is no preceding or accompanying increase in TNF-α in 
moderate acute exercise.

Chronic changes due to exercise
The acute changes in cytokine production during exer-
cise are fairly well characterised, although there is some 
variation based on the intensity and type of exercise. 
However, less data is available on the long-term effects of 
regular exercise on the cytokine profile in humans. The 
reasons for this include the difficulty in determining the 
extent to which the cytokine production is a consequence 
of physical fitness per se, associated lifestyle factors or a 
direct consequence of an exercise regime. Furthermore, 
determining a true ‘resting’ cytokine profile creates logis-
tical issues when recruiting subjects willing to abstain 
from exercise for the duration of a study [2].

The existing studies indicate that the cytokine profile of 
an individual changes with chronic exercise, although the 
degree to which they change remains widely debated.

With regards to changes in pro-inflammatory 
cytokines, the ATTICA study found that regular physi-
cal activity reduces basal plasma IL-6 and TNF-α in an 
urban population [52]. One proposed mechanism for 
the cytokine changes observed is that regular exercise 
leads to a reduction in body fat. Adipocytes are a major 
source of pro-inflammatory cytokines, including TNF-α 
and IL-6 [53], although this reduction also occurs in the 
absence of weight loss or changes in body composition, 
suggesting other mechanisms, including potentially also 
direct anti-inflammatory effects on immune cells, are 
likely to be involved [54].

Alongside the observed reduction in pro-inflammatory 
cytokines, regular exercise has been shown to increase 
the circulating concentration of anti-inflammatory 
cytokines. Prokopchuk et  al. demonstrated that IL-1Ra, 
IL-4 and IL-13 were significantly increased with high-
intensity training over a 6-week period [41], with the 
increase in IL-1Ra replicated by Forti et al. [55].

These findings support a relationship between low 
physical activity and inflammation, in which low levels 
of physical activity are associated with chronic low-grade 
inflammation, which may contribute to the increased 
cardiovascular risk associated with sedentary lifestyles 
[52, 56–59]. This relationship between regular exercise, 
cytokine profiles and inflammation is one which, with 
further research, may provide further insight into the 
long-term benefits of exercise, particularly in regards to 
inflammatory, cardiovascular and other chronic diseases, 
and deliver additional opportunities to intervene in these 
conditions.

The effect of excessive exercise
As mentioned, there are a multitude of undeniable ben-
efits that regular, moderate exercise can provide, extend-
ing from metabolic to cardiac to psychological. However, 
exercise is not without its dangers as well, especially 
when performed to an excessive level. Excluding injury, 
there are several levels of severity to the harm exercise 
can cause. ‘Overreaching’ is when there is a temporary 
drop in performance as a result of excessive training, 
which recovers after a period of rest [98]. Overtraining 
syndrome (OTS) is more severe, when the deterioration 
in performance persists despite adequate rest [94, 98]. 
This is also associated with an array of other symptoms, 
including but not limited to: increased susceptibility to 
injury, fatigue, sleep disruption, weight loss, muscle ten-
derness, weakness, depression, anxiety, difficulty concen-
trating and loss of appetite. In addition to this, there are 
biochemical and immunological changes which occur, 
with many reportedly experiencing an increased sus-
ceptibility to infection and illness [94, 98, 101]. There 
are many proposed mechanisms for this, but thus far, no 
overarching explanation for the phenomenon seems to 
have been discovered.

In 2000, Smith introduced the ‘Cytokine Hypothesis of 
Overtraining’, arguing that the collection of symptoms 
and biochemical/immunological changes experienced 
with OTS are caused by pro-inflammatory cytokines, 
mainly IL-1β, IL-6 and TNF-α [94]. It has been reported 
extensively that excessive exercise leads to an increase 
in pro-inflammatory cytokines [91, 92, 94, 98–103]. 
Excessive exercise, particularly with the use of eccentric 
contractions (often demonstrated using methods such 
as downhill running) have been shown to increase pro-
inflammatory cytokines in the serum, within the mus-
cle tissue itself, and within articular cartilage [102, 103]. 
It is plausible, and in fact likely that these cytokines are 
responsible for many of the symptoms experienced in 
OTS, such as low mood, loss of appetite, elevated corti-
sol levels etc. [94]. However, studies have demonstrated 
that within 2 weeks of OTS diagnosis, pro-inflammatory 
cytokine levels normalised with rest whilst diminished 
performance levels remained, suggesting other processes 
are also at work [104].

Many other mechanisms have been shown to contrib-
ute to varying degrees, including muscle glycogen deple-
tion, free radical damage to contractile proteins, reduced 
mitochondrial capacity and so on [94, 98, 101]. Exercise is 
known to cause physiological damage to muscle, termed 
‘microtrauma’, which allows the muscle to repair and 
remodel to adapt to increased loads, resulting in hyper-
trophy and angiogenesis [94, 98, 99, 109, 111]. Tightly 
regulated inflammation is the process which enables this 
and involves myeloid cell invasion of the damaged muscle 
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[109–111]. Macrophages are the main component of this 
adaptive response, and cytokines thought to play a role in 
this include TNF-α and IFNγ, which cause a pro-inflam-
matory macrophage response, and IL-4, IL-10 and IL-13, 
which cause an anti-inflammatory macrophage response 
and actually inhibit optimal repair [113]. When adequate 
recovery is not allowed, chronic inflammation can set in, 
characterised by elevated intramuscular levels of TNF-
α, IFNγ, IL-6 and IL-10, with muscle damage persisting 
for weeks [98, 109]. Chronically elevated IL-6 is known 
to downregulate expression of proteins involved in the 
mitochondrial electron transfer chain as well as upregu-
late oxidative ability of neutrophils, releasing more reac-
tive oxygen species (ROS) causing free-radical damage to 
the contractile protein filaments within myofibrils, thus 
impeding muscle function [98, 112].

Intimately interlinked with the cytokines are the white 
blood cells. Nieman introduced the J-shaped curve in 
1994, suggesting that moderate exercise reduces the 
chance of infection whilst excessive exercise increases 
the risk above that of a sedentary individual [114]. The 
infection in question is an upper respiratory tract infec-
tion (URTI), since this is the most common infection 
experienced by athletes in both summer and winter 
sports [106]. Exercise in moderate amounts is known 
to be immunoprotective [97]. In response to an acute 
bout of strenuous exercise (e.g. running a marathon), 
many immune cell changes are witnessed. A biphasic 
neutrophilia occurs, firstly due to demargination then 
cortisol-induced neutrophil release from bone marrow; 
initial neutrophil degranulation and increased oxida-
tive burst activity proceeded by a decrease below base-
line in both, most likely mediated by IL-6 surges; NK 
cell surge likely mediated by catecholamine-induced 
demargination; decreased nasal and salivary IgA levels 
likely due to increased sympathetic activity; decreased 
MHC-II expression and toll-like receptor expression on 
monocytes/macrophages; increased pro-inflammatory 
and anti-inflammatory cytokines including TNF-α, IL-6, 
IL-1β, IL-4, IL-10, IL-1ra etc.; upregulation of  TH2 lym-
phocytes and concurrent downregulation of  TH1 medi-
ated by the pattern of raised cytokines [94, 97, 99–101, 
103, 107]. These changes may last anywhere from 2-24 h 
or beyond and are often proportional in magnitude and 
duration to the intensity and length of the exercise [99]. 
It is often argued that the changes seen increase suscep-
tibility to infection and thus ratifies the ‘open window’ 
[99, 105, 106]. It is hypothesised that these changes, when 
compounded during an intense period of training with-
out adequate rest, lead to overall immunosuppression 
and hence create the J-shape curve where high exercise 
levels lead to increased infections [106].

Several controversies still remain unsolved regarding 
this issue, as the clinical significance of the initial immune 
changes remain contested. Some papers argue that a sin-
gle bout of excessive exercise leads to increased URTI 
risk, such as Nieman who found increased URTI rates 
in those who participated in the Los Angeles Marathon, 
with the risk 2-times higher in those who trained over 
97 km per week in the lead up to the race [107]. It should 
be pointed out though that only 1 in 7 experienced any 
symptoms, so the vast majority did not [107]. This may 
be related to the findings that high exercise loads, in addi-
tion to causing inflammation, also increase circulating 
concentrations of the anti-inflammatory cytokines IL-4 
and IL-10, which are known to cause immunosuppres-
sion and correlate with increased URTI incidence [101, 
116–118]. Others, however, argue that the symptoms 
are in fact reactivation of a virus not completely cleared 
before running the race, or even non-infective inflamma-
tion as a result of increased exposure to irritants and pol-
lutants whilst exercising [99, 106, 108]. In most studies, 
none of the infections were clinically diagnosed or veri-
fied using viral swabs, relying solely on the self-reporting 
and self-diagnosis of participants [97]. Other factors, 
such as pathogen exposure, psychological stress, sleep 
hygiene and diet were not taken into account, which are 
also known to have an effect on immune function [97, 
106].

Whilst it is generally accepted that OTS has an asso-
ciated infection risk, with these infections arriving more 
frequently and lasting longer than healthy individuals, 
the J-shape curve theory weakens when elite athletes are 
taken into consideration [105, 108, 115, 119]. This makes 
sense, as Mårtensson et  al. point out that in order to 
maintain a competitive training schedule of 500–800  h 
per year, athletes cannot afford to be stricken with illness 
very often [108]. When extrapolating this data out, the 
curve becomes more of an S-shape, suggesting that the 
high level of activity associated with immunosuppression 
be more applicable to recreational and sub-elite athletes 
rather than professional, elite athletes [105, 108, 115, 
119].

Exercise Induced cytokines and the musculoskeletal 
system
As described, exercise-related cytokines are largely 
derived from within the musculoskeletal system there-
fore have a role to play in musculoskeletal health and its 
pathology. Alongside this, many musculoskeletal condi-
tions are characterised by local or systemic inflammation 
which, in turn, creates a complex relationship between 
the pre-existing immune environment and the additional 
immune modulation derived from exercise.
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Osteoarthritis
Osteoarthritis (OA) is a disease of the joint in which 
excessive ‘wear and tear’ results in increased degrada-
tion of articular cartilage and the underlying subchondral 
bone. In terms of pathophysiology, OA is the result of a 
disruption to the homeostatic process of synthesis and 
degradation of articular cartilage, extracellular matrix 
and subchondral bone. OA commonly affects the knees, 
hips and small joints of the hands [60] and can result in 
significant pain and morbidity for patients. It is estimated 
that 8.5million patients in the UK suffer from OA, with 
incidence increasing as related conditions such as obe-
sity also increase in prevalence [61]. Treatment options 
include analgesia and physiotherapy in the earlier stages, 
although a significant number of patients will progress to 
requiring total joint replacement to improve their quality 
of life [62].

While osteoarthritis is not traditionally considered an 
inflammatory disease, the role of local cytokines in the 
pathophysiology of the condition has become increas-
ingly recognised in recent years. Studies have found 
evidence of elevated IL-1 family members, TNF-α and 
IL-6 in the synovium, subchondral bone and cartilage 
of patients with OA, suggesting a role for inflammation 
in this pathology [63, 64]. These cytokines are released 
by cells in adipose tissue and act as part of the system 
to negatively regulate cartilage synthesis. IL-1 and IL-6 
inhibit collagen II synthesis while increasing the activity 
of matrix-metalloprotinases (MMPs) – collagen digest-
ing enzymes. The discovery of the role of IL-6 in cartilage 
regulation has prompted research into the effects of IL-6 
blockade in OA [63]. A phase 3 clinical trial has recently 
been completed which examined the efficacy of tocili-
zumab, an IL-6 receptor inhibitor, in the treatment of OA 
[65]. The results from this trial are yet to be published, 
but they may provide further insight into the extent IL-6 
influences OA pathology.

With relation to exercise, there has been extensive 
research into how exercise influences outcomes in OA. 
Meta-analyses have reported that exercise improves pain, 
function and quality of life for patients with OA [66] and 
in the UK the National Institute for Health and Care 
Excellence (NICE) guidelines recommend exercise ther-
apy as part of first line treatment [62].

Despite these recommendations, little research is avail-
able to indicate how exercise improves OA at the molec-
ular level. Data from the ADAPT trial showed that higher 
levels of inflammatory markers, including IL-6, are asso-
ciated with poorer patient-reported outcomes, independ-
ent of body mass index [64]. However, a causal link has 
not been proven. Further research is warranted to deter-
mine the role of exercise-induced cytokines in the patho-
physiology and treatment of OA, which may provide an 

evidence base for the best use of exercise in the manage-
ment of OA.

Rheumatoid arthritis
A similar relationship can be seen in rheumatoid arthritis 
(RA), the most prevalent form of inflammatory arthritis. 
RA is a systemic auto-immune condition that primarily 
affects the synovial joints. RA is characterised by synovi-
tis, autoantibody production, cartilage and bone destruc-
tion in addition to systemic inflammation and features 
such as cardiovascular and pulmonary manifestations. 
[67]

Cytokines play a central role in the pathogenesis of RA. 
Amongst others, TNF-α and IL-6 have been implicated 
as key drivers of the systemic inflammation observed in 
RA patients. It has been proposed that the dysregulated, 
persistent production of IL-6 contributes to the produc-
tion of autoantibodies, local inflammation and systemic 
effects [68].

In contrast to its role in exercise, IL-6 is thought to be 
largely pro-inflammatory in RA. Inhibition of IL-6 using 
anti-IL-6 receptor antibody (tocilizumab) is an effective 
and widely used first-line biological therapy in the treat-
ment of active moderate-to-severe RA [69].

Given that reducing systemic IL-6 is beneficial in RA, it 
would be reasonable to hypothesise that exercise, and its 
associated rise in IL-6, may potentially worsen the symp-
toms of RA. However, multiple studies have shown that 
exercise programmes can reduce symptoms of pain and 
stiffness in patients with RA. [70] Furthermore, exercise 
has benefits in terms of improving functional ability and 
psychological well-being. Crucially there is no evidence 
to suggest that exercise exacerbates disease activity [71]. 
These findings indicate that exercise, both resistance and 
aerobic, should be included in the treatment of RA. This 
is reflected in clinical guidelines which recommend that 
patients with RA should participate in regular exercise 
[72] [73].

The question therefore remains, how does exercise—
which is known to induce IL-6 production and release—
result in benefits for patients with RA? The answer may 
come from the transient nature of IL-6 release in exercise 
and lack of accompanying increase in TNF-α [74]. Unlike 
in active RA where IL-6 is chronically elevated, IL-6 rises 
throughout the period of exercise, before rapid removal 
from the circulation in the post-exercise period (Fig.  2) 
[75]. During its short period of activity, IL-6 induces the 
upregulation of anti-inflammatory cytokines, includ-
ing IL-1Ra, which persist in the circulation and induce a 
longer lasting anti-inflammatory effect [31]. The overall 
net anti-inflammatory effect of exercise may account for 
some of the symptomatic improvement for patients with 
RA, despite an accompanying increase in IL-6.
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Psoriatic arthritis
Exercise has also been recognised as beneficial for symp-
tomatic management in patients with Psoriatic Arthritis 
(PsA). PsA is a chronic inflammatory joint disease, affect-
ing joints, tendons and ligaments in some patients with 
skin psoriasis [76]. Whilst PsA can present similarly to 
RA, PsA represents a distinct immunopathology with a 
cytokine profile that is distinct from RA [77].

While the IL-23/IL-17 pathway is now recognised as 
being key in psoriatic disease [78], L-6 is also raised and 
implicated in PsA. IL-6 is elevated in the synovium of 
patients with PsA and has a role in promoting T-helper 
cell differentiation, thus propagating the inflammatory 
cycle. [79] However, clazakizumab, an IL-6 inhibitor, 
failed to demonstrate a dose response in a phase II study. 
[80]

The failure of IL-6 blockade suggests that, although 
IL-6 is involved, it is not central to the initiation of the 
inflammatory response [81]. It has been proposed that 
the inhibition of IL-6 leads to the overproduction of 
other pro-inflammatory cytokines, such as IL-17, locally 
within the skin and joints further driving pathology [82].

It is unclear whether the benefit of exercise in PsA is 
also due to the net anti-inflammatory effect proposed for 
RA or if low levels of IL-6 may help stabilise some of the 
other pro-inflammatory cytokines in affected tissues.

Tendinopathy
Tendinopathy is a common musculoskeletal presentation 
in both the general practice and orthopaedic setting. The 
condition can cause significant pain on movement and 
loss of function for patients, as well as weakening of the 
tendon itself [83]. This results in a predisposition to tears 
which may require surgical intervention. Current treat-
ment for tendinopathy is centred around tendon loading 
programs to restore the capacity of the affected tendon; 
however, while this has been shown to be of benefit, for 
many patients loading programs fail to achieve adequate 
improvements, with the result many patients continue to 
suffer from chronic pain and dysfunction.

The role of inflammatory cytokines in tendinopathy 
has been widely debated; however, it is increasingly rec-
ognised as playing a significant role in the early stages of 
tendon disease [84]. As tendinopathy is most commonly 
a result of overuse, it often affects people who exercise 
regularly. It is therefore of interest to determine how 
exercise-induced cytokines influence tendinopathy.

As in skeletal muscle, exercise induces IL-6 expres-
sion in tendon tissue. It has been shown that following 
exercise, IL-6 is upregulated in healthy tendon but not 
in tendinopathic tendon [85]. Additionally, mice lacking 
the IL-6 gene were found to have inferior tendon healing 
compared to wild-type mice [86]. This provides evidence 

for the role of exercise-induced cytokines in normal ten-
don physiology and adaptation to exercise, and suggests 
a role for IL-6 in tendon healing and failed response to 
loading stimuli.

Studies have shown that the use of eccentric loading 
exercises improve outcomes in patients with tendinopa-
thy [87]. Recently, meta-analysis has found strong and 
consistent evidence indicating eccentric loading exer-
cises are the most effective treatment for tendinopathies 
[88]. Additionally, it was found that eccentric exercise 
increases the cross-sectional area and stiffness of tendon 
[89]. Tendon tissue has been shown to upregulate IL-6 
and TGF-β in response to mechanical stimulation, with 
TGF-β proposed as the driving force behind the struc-
tural changes observed with repeated eccentric exercise. 
TGF-β has been shown to induce remodelling in a variety 
of tissues by promoting epithelial-mesenchymal trans-
formation, suggesting this may also be the case in ten-
don [89]. Further research is required to understand the 
physiological role of IL-6 and TGF-β in tendons in order 
to help determine the point at which exercise begins to 
promote an inflammatory environment.

The apparently paradoxical roles of IL-6 in chronic 
musculoskeletal conditions, such as tendinopathy, OA 
and inflammatory arthritis, highlights the diversity of the 
musculoskeletal system’s response to cytokines which 
regulate it, both in response to exercise and in overall 
health. Currently exercise is mainly used for symptom 
control and functional improvement in these conditions; 
an improved understanding of the relationship between 
exercise-related immune changes and musculoskeletal 
health may facilitate evidence-based therapeutic exercise 
strategies targeting the inflammatory pathology of these 
conditions, in conjunction with pharmaceutical agents.

Conclusions
Exercise induces significant physiological changes in 
the immune system, including characteristic cytokine 
responses. Most notable is a marked elevation in muscle-
derived IL-6 which, despite being traditionally regarded 
as a potent pro-inflammatory cytokine, helps orchestrate 
an anti-inflammatory immune response in exercise.

Despite IL-6 and pro-inflammatory cytokines being 
implicated in various chronic musculoskeletal condi-
tions, this exercise-induced increase in IL-6 does not 
appear to lead to inflammatory exacerbations in these 
conditions, with exercise generally conferring benefi-
cial effects. This interaction raises intriguing questions 
about how to best utilize this effect for the treatment of 
these conditions and offers exciting research opportuni-
ties within the fields of sports medicine and immunobi-
ology, both clinically and experimentally. With continued 
research, exercise and its associated cytokine profile may 
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provide an effective therapeutic avenue that will lessen 
the burden of musculoskeletal disease.
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