
Homan et al. 
BMC Sports Science, Medicine and Rehabilitation           (2022) 14:71  
https://doi.org/10.1186/s13102-022-00461-x

RESEARCH

Comprehensive validation of a wearable foot 
sensor system for estimating spatiotemporal 
gait parameters by simultaneous 
three‑dimensional optical motion analysis
Kentaro Homan1, Keizo Yamamoto2, Ken Kadoya1*, Naoki Ishida3 and Norimasa Iwasaki1 

Abstract 

Background:  Use of a wearable gait analysis system (WGAS) is becoming common when conducting gait analysis 
studies due to its versatility. At the same time, its versatility raises a concern about its accuracy, because its calcula-
tions rely on assumptions embedded in its algorithms. The purpose of the present study was to validate twenty 
spatiotemporal gait parameters calculated by the WGAS by comparison with simultaneous measurements taken with 
an optical motion capture system (OMCS).

Methods:  Ten young healthy volunteers wore two inertial sensors of the commercially available WGAS, Physilog®, on 
their feet and 23 markers for the OMCS on the lower part of the body. The participants performed at least three sets of 
10-m walk tests at their self-paced speed in the laboratory equipped with 12 high-speed digital cameras with embed-
ded force plates. To measure repeatability, all participants returned for a second day of testing within two weeks.

Results:  Twenty gait parameters calculated by the WGAS had a significant correlation with the ones determined by 
the OMCS. Bland and Altman analysis showed that the between-device agreement for twenty gait parameters was 
within clinically acceptable limits. The validity of the gait parameters generated by the WGAS was found to be excel-
lent except for two parameters, swing width and maximal heel clearance. The repeatability of the WGAS was excellent 
when measured between sessions.

Conclusion:  The present study showed that spatiotemporal gait parameters estimated by the WGAS were reason-
ably accurate and repeatable in healthy young adults, providing a scientific basis for applying this system to clinical 
studies.
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Background
Gait analysis provides important information when 
diagnosing people with musculoskeletal and neurologi-
cal disorders. Accumulated evidences indicate that the 

assessment of comprehensive gait characteristics can 
aid in making a diagnosis as well as planning a treat-
ment more efficiently, compared to a simple measure-
ment of gait speed [1–3]. Visual observation is the most 
common method, but it is subjective, not quantitative, 
and heavily dependent on the observer’s experience [4]. 
Although questionnaires or simple assessments about 
cadence, stance time, step length, and stride length help 
further our understanding of gait characteristics [5, 6], 
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they are apparently insufficient to describe each gait 
characteristic, which is a highly complex set of move-
ments of the whole body. To obtain an adequate under-
standing of gait characteristics, several instruments 
have been developed, and a combination of an optical 
motion capture system (OMCS) with force plates is 
currently considered the gold standard [7, 8]. Despite 
its great capacity to characterize gait, the OMCS 
remains uncommon in clinical practice due to its long 
operation time, dedicated space requirements and high 
cost.

As a result of the recent advances in information tech-
nology, new gait analysis systems have been developed [9, 
10]. Inertial sensors combined with software incorporat-
ing special algorithms are now available as a wearable gait 
analysis system (WGAS) to measure spatiotemporal and 
kinematic gait parameters. Because the WGAS is usable 
anywhere inside and outside clinics and research labora-
tories, it can virtually evaluate unlimited numbers of gait 
cycles, and is less expensive than OMCSs, it has great 
versatility under a variety of conditions [11–13]. At the 
same time, the parameters calculated by WGASs depend 
totally on the assumptions embedded in their algorithms, 
raising potential concerns about accuracy and reliability 
[14]. Accordingly, an unusual gait or unexpected condi-
tion is likely to cause its calculations to be wrong. Clini-
cal gait analysis targets various kinds of subjects from 
young to elderly persons, as well as various conditions 
from musculoskeletal to metabolic disorders, under dif-
ferent circumstances. Thus, it is critical to determine 
the range in which the WGAS can provide accurate esti-
mates before conducting gait analysis research using this 
system. Although multiple gait parameters can be calcu-
lated simultaneously with the WGAS [15–31], no study 
comprehensively examined the actual accuracy of all of 
their gait parameters.

Physilog® (GaitUp, Lausanne, Switzerland) is one of 
the commercially available WGASs that can estimate 20 
spatiotemporal gait parameters by only placing sensors 
on both feet. Accuracy of 18 parameters were partially 
verified by elemental methods using a prototype [22, 24, 
32–35]. Two studies conducted validation of the current 
system in stroke patients, however, their analysis was 
limited to 7 parameters [22, 23]. Another study exam-
ined its reproducibility but not accuracy of 9 parameters 
in healthy subjects [25]. Therefore, the purpose of the 
present study was to validate spatiotemporal gait param-
eters calculated with Physilog® by comparing them to the 
same parameters measured simultaneously by the OMCS 
in healthy individuals. The present study provides a basis 
for clinical gait analysis using Physilog®, demonstrates a 
standard for other WGASs, and generates a rationale to 
use the WGASs for clinical gait analysis.

Methods
Participants
A total of 10 male volunteers (age 20.4 ± 0.5 years, weight 
74.6 ± 5.2  kg, height 176.5 ± 3.7  cm, BMI 23.9 ± 1.5  kg/
m2) with no signs of neurological or musculoskeletal 
impairment participated in the study. We recruited only 
males to eliminate the effects of gender variability on 
gait as previous WGSs validating studies [15, 27, 28, 
36]. Exclusion criteria included: recent major ligament 
injury, surgery, fracture or muscle injury in the lower 
limb, abnormal gait pattern, contraindication to exercise, 
or other health conditions that would adversely impact 
gait characteristics. Based on previous validation stud-
ies with Physilog® [22, 23, 25], the sample size required 
to calculate the ICC was determined to be 10, which is 
the number of people required to satisfy the conditions 
of one examiner, with a significance level of 5%, an ICC 
estimate of 0.8, and a confidence interval of 0.2. All the 
10 subjects had the right leg as dominant (the preferred 
limb used to kick a ball). The protocol for this study was 
approved by the Institutional Review Board of Hokkaido 
University (#16-062), and all participants provided their 
written, informed consent before participating.

Walking protocol
Subjects wore the Physilog® sensors (Physilog4) on each 
foot with a Velcro strap and the retro-reflective mark-
ers for the OMCS (Motion Analysis, Santa Rosa, USA) 
(Fig. 1). For simultaneous analysis, reflective markers were 
placed on both feet (first and fifth metatarsal joints, heels) 
and both ankles (medial and lateral condyles) of the par-
ticipants with a foot configuration corresponding to the 
Physilog® sensors. The participants walked 10 round trips 
at a comfortable pace along a 10-m straight path, and 6 
round trips in the middle of the session were used for the 

Fig. 1  Left is a representative picture showing a subject with 
retro-reflective markers and Physilog® sensors on both feet in the 
room equipped for the OMCS. Right illustrates the positions of the 
retro-reflective markers for the OMCS
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analysis. Four 0.5-m-long force plates (AMTI, Watertown, 
MA, USA) were embedded in the middle of the walkway 
to identify the time of heel-contact and toe-off. To identify 
each step on the force plate, each walk was recorded by a 
digital video camera. The obtained foot data were selected 
for further comparative analysis when a whole gait cycle 
on the force plates was properly identified. Two gait cycles 
per walk could be measured by the OMCS. If slippage of a 
step over the force plate was found on the video, that gait 
cycle was excluded from the analysis. Subjects were not 
informed about the necessity of proper foot placement 
on the force plates to avoid its potential influence on their 
gaits. All gait parameters of the limb calculated by Physi-
log® were comparatively analyzed with the same param-
eters calculated within the Visual3D pipeline (C-motion 
Inc., Germantown, MD, USA) using the OMCS data. 
Table 1 provides the definitions of each parameter based 
on the instruction manual provided with Physilog®. To 
measure the repeatability of the Physilog®, all subjects 

returned for a second day of testing within two weeks. 
The protocol remained identical to the first day, and the 
order of the trials was preserved.

Table 1  Definitions of gait parameters

Parameter Unit Definition

Cycle duration Second (s) The time between the heel touching the ground and the ipsilateral heel 
touching the ground again, meaning one gait cycle

Cadence Steps per minute (steps/min) The number of cycles in a minute

Stance phase (Stance) Percent (%) of cycle duration The percentage of time a part of the foot touches the ground during a gait 
cycle

Swing phase (Swing) Percent (%) of cycle duration The percentage of time the foot are in the air and not touching the ground 
during a gait cycle

Loading phase (Loading) Percent (%) of stance The percentage of time between the heel strike and the foot being flat on 
the ground during stance phase

Foot-flat phase (Foot-flat) Percent (%) of stance The percentage of time where the foot is fully flat on the ground during 
stance phase

Pushing phase (Pushing) Percent (%) of stance The percentage of time between the foot being flat on the ground and the 
toe leaving the ground at take-off during stance phase

Double support phase (Double support) Percent (%) of cycle duration The percentage of time both feet touches the ground during a gait cycle

Stride length Meter (m) The distance between two consecutive footprints on the ground, meaning 
the distance from the heel of one foot to the heel of the same foot one cycle 
later

Stride velocity Meter per second (m/s) The forward speed of one cycle

Peak angle velocity (Peak ang. velocity) Degree per second (°/s) The maximum angular velocity during the swing phase, between maximal 
heel clearance and minimal toe clearance

Maximal swing speed (Swing speed) Meter per second (m/s) The maximum forward speed of the foot during swing phase

Strike angle Degree (°) The angle between the foot and the ground at heel contact

Lift-off angle Degree (°) The angle between the foot and the ground at the end of the pushing phase

Swing width Meter (m) The maximal lateral excursion between the forward path and the real path of 
the foot during swing phase

3D path length Percent (%) stride length The length of the path of the foot during one cycle in 3D space

Maximal heel clearance (Max. heel) Meter (m) The maximal height above the ground reached by the heel during one cycle

Maximal toe clearance 1 (Max. toe1) Meter (m) The maximal height above the ground reached by the toe just after heel 
maximal clearance

Minimal toe clearance (Min. toe) Meter (m) The minimum height of the toe during swing phase

Maximal toe clearance 2 (Max. toe2) Meter (m) The maximal height above the ground reached by the toe just before heel 
contact

Fig. 2  Temporal events during the stance phase. Toe contact and 
heel off events are defined as when the pitch angular velocity of the 
foot segment reaches above − 2 rad/s and below − 1 rad/s during 
the stance, respectively, and are used to distinguish among loading, 
foot-flat, and pushing in the stance phase
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Table 2  Statistical parameters of validity and repeatability of all gait parameters calculated with Physilog®

95% Limits of agreement

Validity LCC r Bias Lower bound Upper bound Significance

General

Cadence 0.930 0.931 0.169 − 3.440 3.777 < 0.0001

Cycle duration 0.932 0.947 − 0.007 − 0.032 0.018 < 0.0001

Stride length 0.979 0.979 − 0.001 − 0.019 0.016 < 0.0001

Stride velocity 0.927 0.929 − 0.003 − 0.050 0.044 < 0.0001

Spatial

3D path length 0.676 0.688 0.058 − 1.271 1.386 0.0004

Peak ang. Velocity 0.961 0.964 3.320 − 22.72 29.36 < 0.0001

Swing width 0.406 0.903 − 0.024 − 0.045 − 0.004 < 0.0001

Lift-off angle 0.674 0.852 3.947 − 2.481 10.37 < 0.0001

Strike angle 0.912 0.925 0.290 − 1.086 1.665 < 0.0001

Swing speed 0.991 0.992 − 0.004 − 0.069 0.061 < 0.0001

Clearance

Max. heel 0.438 0.877 − 0.025 − 0.044 − 0.007 < 0.0001

Max. toe1 0.729 0.850 0.006 − 0.009 0.021 < 0.0001

Min. toe 0.506 0.817 0.004 − 0.000 0.008 < 0.0001

Max. toe2 0.624 0.840 − 0.009 − 0.028 0.009 < 0.0001

Temporal

Stance 0.898 0.906 0.191 − 1.360 1.741 < 0.0001

Double support 0.509 0.764 2.700 − 1.532 6.933 0.0004

Foot-flat 0.961 0.962 − 0.099 − 1.748 1.550 < 0.0001

Loading 0.827 0.836 0.226 − 1.671 2.122 < 0.0001

Pushing 0.832 0.869 − 0.155 − 2.895 2.585 < 0.0001

Swing 0.829 0.871 − 0.593 − 2.591 1.406 < 0.0001

Repeatability LCC r ICC (3, 1) MDC Significance

General

Cadence 0.955 0.960 0.977 1.902 < 0.0001

Cycle duration 0.958 0.964 0.979 0.017 < 0.0001

Stride length 0.851 0.861 0.921 0.051 0.0014

Stride velocity 0.763 0.824 0.869 0.088 0.0034

Spatial

3D path length 0.890 0.975 0.943 0.292 < 0.0001

Peak ang. Velocity 0.944 0.946 0.971 23.483 < 0.0001

Swing width 0.880 0.902 0.944 0.011 0.0004

Lift-off angle 0.938 0.939 0.968 3.534 < 0.0001

Strike angle 0.899 0.900 0.947 1.409 0.0004

Swing speed 0.861 0.874 0.928 0.191 0.001

Clearance

Max. heel 0.852 0.872 0.921 0.015 0.001

Max. toe1 0.899 0.934 0.949 0.009 < 0.0001

Min. toe 0.836 0.842 0.912 0.005 0.0023

Max. toe2 0.954 0.957 0.978 0.008 < 0.0001

Temporal

Stance 0.836 0.893 0.942 0.824 0.0005

Double support 0.703 0.845 0.838 1.729 0.0021

Foot-flat 0.894 0.901 0.944 2.608 0.0004

Loading 0.854 0.863 0.922 1.054 < 0.0001
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WGAS
The gait analysis system of the Physilog® consisted of two 
small (50  mm × 37  mm × 9.2  mm), lightweight (19  g), 
inertial sensors for each foot, elastic straps to attach the 
sensors to the dorsum of the foot, and Gait Analyser 
software version 3.1 (GaitUp) running on a Windows 
PC (Microsoft, Redmond, WA, USA). Two sensors on 
both feet can be synchronized wirelessly, and no calibra-
tion procedure is required before and during the meas-
urement. The algorithm estimates vertical alignment by 
detecting the vertical gravity axis from the accelerometer 
during the standing posture and azimuth alignment by 
maximizing the pitch angular velocity during walking. 
The position of the sensor on the foot does not affect 
the measurement [33]. Signals were sampled at 200  Hz 
and stored on an internal memory card. The recorded 
data were converted to left and right spatiotemporal gait 
parameters (per gait cycle) using the Gait Analyser soft-
ware. The dedicated algorithms have been described else-
where [24, 32–34]. For analysis, gait cycles in which all of 
the obtained parameters were error-free were used.

OMCS
As a reference for the WGAS, lower extremity kinematic 
and kinetic data were measured by the system consist-
ing of three-dimensional motion analysis and force plat-
forms. A 12-camera system (Raptor-E, Motion Analysis 
Corp., Santa Rosa, CA, USA) captured the motion at a 
sample rate of 200 Hz, and four force platforms (AMTI, 
Watertown, MA, USA) recorded the ground reaction 
forces (GRF) at 1000 Hz. Twenty-three, 12.7-mm-diame-
ter, retro-reflective markers were placed on specific loca-
tions of the pelvis, thighs, knees, lower legs, ankles, and 
feet to calculate joint centers and segment positions and 
to track segment motions, as mentioned above, followed 
by data processing with custom Visual3D software. The 
lower body pipeline, which is based on the Helen Hayes 
model, was used to calculate left and right spatiotem-
poral gait parameters. The data for the marker positions 

and force were smoothed by a fourth-order, zero phase 
shift, Butterworth low-pass filter at a cutoff frequency of 
6 Hz for the positional data and 18 Hz for the force data. 
The cutoff frequency was determined by conducting a 
residual analysis. Initial contact and toe-off events were 
defined as when the vertical component of the unfiltered 
GRF exceeded and fell below 10 N, respectively.

As the laboratory coordinate system, camera cali-
bration was conducted just before the motion meas-
urement. The Ylab and Zlab axes corresponded to the 
posterior-anterior (direction of travel is positive) and 
inferior-superior (vertical upward direction is positive) 
directions, respectively. The Xlab axis (with the medial–
lateral direction, right side to the direction of travel is 
considered positive) was calculated from the external 
product of the Ylab vector and Zlab vectors. Participants 
were instructed to walk in the positive direction of the 
Ylab axis. The segmental coordinate system of the foot 
segment was constructed from the markers affixed to the 
participants’ feet. For the right foot segment, the mid-
point of the line segment connecting the medial and lat-
eral malleoli of the ankle joint was set as the joint center 
of the ankle, and the vector from the medial malleolus to 
the lateral malleolus was set as the Xfoot axis for the right 
foot segment (the vector from the lateral malleolus to 
the medial malleolus was set as the Xfoot axis for the left 
foot segment). Next, the midpoint of the markers affixed 
to the distal ends of the first and fifth metatarsals was 
defined as the toe, and the Zfoot axis was defined as the 
external product of the Xfoot vector and the vector from 
the joint center of the ankle to toe. The Yfoot axis was 
defined as the vector calculated by the external product 
of the Zfoot and Xfoot vectors. To generate loading, foot-
flat, and pushing (Fig. 2), the stance phase was separated 
based on the waveform data of the pitch angular velocity 
of the foot segment. The events of toe contact and heel 
off were defined by the pitch angular velocity of the foot 
segment being above − 2 rad/s and below − 1 rad/s dur-
ing the stance, respectively [34].

Table 2  (continued)

Repeatability LCC r ICC (3, 1) MDC Significance

Pushing 0.896 0.913 0.945 2.267 0.0002

Swing 0.836 0.893 0.942 0.824 0.0005

(See figure on next page.)
Fig. 3  Scatter and Bland–Altman plots of the four general (A) and six spatial (B) gait parameters of the OMCS and the Physilog®. In the lower row, 
the Y-axis of the plot corresponds to the difference of the two measurement systems (OMCS minus Physilog®), whereas the X-axis is the average 
of the two measurements. Solid lines mark the average difference for the whole sample, and the dashed lines correspond to the 95% limits of 
agreement. 3D path length measures the actual length of the trajectory of the foot during one cycle in 3D space
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Fig. 3  (See legend on previous page.)
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Statistical analysis
Statistical analysis was performed using SPSS version 23 
(SPSS Inc., Chicago, IL, USA) and GraphPad Prism ver-
sion 8.4.2 (GraphPad Software, San Diego, CA, USA). 
The distribution of each variable was checked for nor-
mality using the Anderson–Darling test. To compare the 
data of the same parameter obtained by the Physilog® 
and the OMCS, the absolute difference and Pearson’s cor-
relation coefficients (r) were calculated. To visualize the 
amount and tendency of the system deviations of the two 
systems, a Bland–Altman plot was used. Limits of agree-
ment were calculated as Meandiff_WO ± (1.96 × SDdiff_WO) 
with Meandiff_WO being the mean difference between 
the WGAS and OMCS and SDdiff_WO being the standard 
deviation of the mean difference between the WGAS and 
OMCS. Lin’s concordance correlation coefficient (LCC), 
an index of how a new test reproduces a gold standard 
test, evaluates the degree to which pairs of observations 
fall on the 45° line through the origin [37]. To determine 
the repeatability of the WGAS measurements, LCC, 
r, and intraclass correlations [ICC(3,1)] between the 
two testing days were calculated. The following criteria 
were used to determine the strength of agreement for 
all parameters. The extent of LCC was categorized into 
4 groups: Excellent (0.75–1.00), Good (0.60–0.74), Fair 
(0.40–0.59), and Poor (< 0.40) [38]. ICC(3,1) is a common 
statistic for evaluating repeatability [39] and is needed 
to calculate the minimally detectable change (MDC). 
SEM is the standard error of measurement, and SD is the 
standard deviation of the measure. SEM and MDC were 
calculated by the following formulas.

Results
Two hundred and thirty-eight gait cycles were simul-
taneously obtained with the WGAS and the OMCS. 
Among them, 214 gait cycles were discarded, because of 
improper foot contact with the force plates and errors 
to generate a full set of the WGAS parameters. Twenty-
four gait cycles were consequently selected for further 
analysis. The statistics for validity of all gait parameters 

SEM = SD×
√
1− ICC

MDC = SEM× 1.96×
√
2

calculated with the WGAS are summarized in Table  2. 
Bland–Altman plots of all parameters are also shown in 
Figs. 3 and 4. The WGAS demonstrated excellent validity 
in 12 of 20 parameters, including all general gait param-
eters (cadence, cycle duration, stride length, and stride 
velocity), most temporal gait parameters (stance, foot-
flat, loading, pushing, and swing), and several spatial 
parameters (strike angle, swing speed, and peak angular 
velocity) (Table  2). Good validity was found for 2 spa-
tial parameters (3D path length and lift-off angle) and 2 
feet clearance parameters (maximum toe 1 and 2). Four 
parameters (swing width, maximum heel, minimum toe, 
and double support) were identified as fair, but all of them 
had high Pearson’s correlation coefficients ranging from 
0.76 to 0.9. The results of repeatability are summarized in 
Table  2. The WGAS demonstrated excellent repeatabil-
ity when measured between sessions (0.70 < LCC < 0.96). 
This was also the case when using other repeatability 
metrics (0.82 < r < 0.96 and 0.83 < ICC (3,1) < 0.98).

Discussion
The present study conducted a comprehensive validation 
of the spatiotemporal gait parameters Physilog® calcu-
lates in healthy individuals and demonstrated that they 
were reliably accurate and repeatable. In particular, the 
general and temporal gait parameters showed excellent 
accuracy and reproducibility. The spatial and clearance 
gait parameters were good or fair in LCCs, but they had 
high correlation coefficients with the OMCS and great 
reproducibility. These results provide the scientific basis 
for conducting clinical gait analysis with the WGAS for 
healthy subjects.

Since the WGAS consists of an accelerometer and 
a gyroscope, it is highly likely that the gait parameters 
directly calculated from their raw values are valid. In fact, 
Peak ang. Velocity, raw data of the accelerometer, showed 
a high degree of agreement with the OMCS. On the other 
hand, most gait parameters depend on the information of 
temporal events and trajectories the algorithm assumes, 
such as the timing of grounding and take-off of feet. 
Therefore, the accuracy of most gait parameters relies 
totally on the accuracy of the estimate the algorithm gen-
erates. The calculation of the general and temporal gait 

Fig. 4  Scatter and Bland–Altman plots of the clearance (A) and temporal (B) gait parameter for validity of both Visual3D (V3D) and Physilog® 
configurations during overground walking conditions. In the lower row the Y-axis of the plot corresponds to the difference between the two 
measurement systems (V3D minus Physilog®), while the X-axis is the average of the two measurements. Solid lines mark the average difference 
for the whole sample, while the dashed lines correspond to the 95% limits of agreement. Max. toe1 means the maximal height above the ground 
reached by the toe just after heel maximal clearance and Max. toe2 the maximal height above the ground reached by the toe just before heel 
contact. The values are based on the result of the left foot of the patient. The stance phase is defined as the period of time where the foot is in 
contact with the ground

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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parameters showed excellent validity except for double 
support, even though it requires the information for the 
timing of initial contact and toe-off of one foot, indicat-
ing the high accuracy of the estimate for the timing of 
temporal foot events by Physilog®. This is in contrast 
with the previous validation study of Physilog® in hemi-
plegic patients revealing low accuracy of its temporal gait 
parameters due to inadequate detection of the timings of 
initial contact and toe-off [22]. Unlike other temporal gait 
parameters, the validity of double support was not very 
good. It is because its calculation needs the information 
for the timing of initial contact and toe-off of both feet 
[21]. The calculation of the foot clearance parameters 
is more challenging than for other parameters, since it 
requires more gait event information, such as timings of 
heel striking and toe off, and the orientation and trajec-
tory of the foot [33]. Accordingly, the LCCs of Max heel 
and Min toe were found to be fair. But their correlation 
coefficients were high, suggesting its usability for clinical 
gait studies. Based on these results, it can be concluded 
that the calculation of the gait parameters by the WGAS 
is reasonable.

Regarding the reproducibility of the WGAS, there was 
a potential concern, because it does not have precisely 
defined rules for placing, holding, and synchronizing the 
sensors [40, 41]. In fact, the present study demonstrated 
that Physilog® had excellent repeatability, indicating 
that the WGAS retains robust accuracy without losing 
its ease of use. When comparing the WGAS to another 
versatile gait analysis method such as conventional visual 
observations, the WGAS is apparently more quantitative, 
accurate, and reproducible. Collectively, it can be con-
cluded that the WGAS is reasonably usable for clinical 
gait analysis.

Although the present study shows the great potential of 
the WGAS for clinical gait analysis, to expand its appli-
cation, the limits within which the WGAS can provide 
accurate measurements need to be determined. Because 
its algorithm determines the stance phase based on the 
differential value of the normal foot pitch angular veloc-
ity and foot angular velocity, in the case of abnormal gaits 
such as drop foot and circumduction gait, it is likely that 
the algorithm fails to provide accurate estimates. There-
fore, to expand the application of the WGAS to patients 
with gait disorders, a study similar to the present one but 
including a wide range of participants with different gait 
disorders needs to be conducted.

The current study has several limitations. Most impor-
tantly, the number of subjects is too small to general-
ize the obtained findings about the WGAS. Further, 
female subjects need to be analyzed, since sex difference 
affects gait characteristics [42, 43]. A large cohort study 

consisting of people with diverse types of backgrounds 
will clarify the reliability and usability of the WGAS. 
Although the number of subjects is small in the present 
study, the obtained results could be a reasonable basis to 
perform the validation study in a large number of people.

The WGAS is a fascinating tool that allows gait analysis 
even under daily living conditions outside of the labora-
tory. Potentially, it could collect gait data before and dur-
ing a falling event, detect subtle gait disturbances that 
physicians cannot notice in the clinic, or screen subjects 
for detailed OMCS analysis. The present study contrib-
utes to such practical use of the WGAS by providing the 
evidence that the WGAS fulfills the requirements for a 
clinical gait analysis tool.

Conclusions
The present study showed that spatiotemporal gait 
parameters estimated by Physilog® were reasonably accu-
rate and repeatable when used in healthy young adults, 
providing a scientific basis for applying this system to 
clinical studies. Because the WGAS is usable both inside 
and outside of the laboratory and has great versatility, it 
could open a new era of gait analysis research by analyz-
ing many subjects in different situations. To expand its 
application to patients presenting with gait disorders, 
further study is necessary to clarify the range that Physi-
log® can analyze accurately.
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