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Abstract 

Background:  Various studies have used different exercise protocols as post-activation performance enhancement 
(PAPE) stimulus; however, little attention has been given to the effects of exercise range of motion on the PAPE effect 
and subsequent performance enhancement. This study aimed to compare the PAPE responses induced by the bench 
press performed with different ranges of motion on subsequent bench press throw performance.

Methods:  Ten resistance-trained males (age: 26 ± 3 years; body mass: 93.2 ± 9.4 kg; height: 181 ± 6 cm; experience in 
resistance training: 6.3 ± 2.4 years; relative bench press one-repetition maximum (1RM) 1.54 ± 0.2 kg/body mass) per-
formed four experimental sessions consisting of a single set of the bench press at 80%1RM until mean barbell velocity 
dropped by 10% as the conditioning activity (CA) with a (1) standard, (2) cambered, (3) and reversed cambered bar-
bell or a control condition in which the participants did not perform any CA. To assess the PAPE effect, single-sets of 2 
repetitions of the bench press throw at 30%1RM were performed before and after the CA at the following time points: 
2, 4, 6, 8, 10 min.

Results:  The two-way ANOVA (4 conditions × 2time points) showed a significant interaction for peak power 
(p < 0.001; η2 = 0.556) and peak velocity (p = 0.001; η2 = 0.457). The standard barbell bench press CA led to the great-
est performance enhancement in peak power (p = 0.001; ES = 0.54) and in peak velocity (p = 0.002; ES = 0.71) within 
the examined conditions.

Conclusions:  The results of this study indicate that the range of motion of the CA has a significant impact on the 
magnitude of the PAPE response, and the greatest effect can be reached when the range of motion of the CA and the 
subsequent explosive task is similar.
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Introduction
The strength-power potentiation complex, recently named 
post-activation performance enhancement (PAPE), is an 
advanced training strategy used to acutely increase power 

performance [1]. It often involves a conditioning activity 
(CA), such as a heavy loaded bench press, followed by an 
explosive exercise with a similar movement structure, for 
example, the bench press throw (BPT) [2]. Performance 
enhancement often occurs 6–10  min after the CA and 
may be associated with increased muscle temperature, 
fiber water content, and muscle activation [3]. However, if 
a significant improvement is observed in the early stages 
after the CA (< 3 min), the contribution of the underlying 
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mechanisms of the post-activation potentiation phenom-
enon cannot be ruled out, such as regulatory light chain 
phosphorylation, an increase in motor unit recruitment, 
and a change in the muscle fibers pennation angle [4].

Various upper and lower body exercises have been 
examined as a stimulus to induce PAPE [5–14]. These 
studies consistently indicate that the key variables of 
effective PAPE include volume, intensity, and the rest-
interval between the CA and subsequent explosive task 
[15]. However, in addition to these variables, research 
indicates that the range of motion may also influence 
strength and power performance [15–17]. For example, 
Esformers and Bampauras [17] reported improvement 
in countermovement jump performance after both the 
quarter and parallel squat exercise as the CA. However, 
the parallel back squat was superior compared to the 
quarter back squat, whereas Mangus et  al. [16] showed 
that part of the study participants increased their vertical 
jump after both, the parallel and quarter squats. In turn, 
Seitz and Haff [15] showed that shallow squat depths 
produced a considerably greater PAPE effect compared 
to deep squats. As suggested by the authors, this may 
be related to the induction of greater fatigue after deep 
squats than the shallow one [15]. Nevertheless, this effect 
is pronounced more in individuals with lower levels of 
muscle strength (< 1.75 relatives back squat strength) 
compared to their stronger counterparts (≥ 1.75) which 
seem to be more fatigue resistant [15]. Therefore, the 
optimal balance between fatigue and potentiation state 
is crucial to enhance subsequent performance. This will 
occur if potentiation exceeds fatigue; however, it will 
remain unchanged if fatigue and potentiation are at simi-
lar levels or decrease if fatigue dominates over potentia-
tion [15]. A highly practical method that may serve as a 
sensitive indicator of neuromuscular fatigue includes 
the recording of velocity-loss during successive repeti-
tions [18]. This solution may be useful when choosing the 
appropriate volume of the CA to maintain the optimal 
balance between potentiation and fatigue and contrib-
ute maximally to the PAPE effect. However, to date, only 
a few studies have investigated the use of velocity-loss 
control during a CA to optimize PAPE [19–22]. Tsoukos 
et  al. [19, 20] showed that 10% velocity-loss (from the 
first repetition in a set) used during the bench press as a 
CA, led to a significant increase of the mean propulsive 
velocity during the subsequent BPT among resistance-
trained males.

Moreover, since muscle activation varies through the 
range of motion, it can be speculated that this aspect 
may also influence the effectiveness of PAPE. For exam-
ple, Krzysztofik et  al. [23] showed that the cambered 
barbell (which allows for a greater range of motion than 
the standard one) was superior in activating the anterior 

deltoid muscle than the standard barbell during the 
bench press exercise. On the contrary, the standard bar-
bell provided higher pectoralis major and triceps brachii 
long head activity. These muscles also play a significant 
role during throwing conditions [24], and the triceps 
shows the highest increase in activity compared to the 
bench press exercise. Therefore, it can be assumed that 
the standard barbell bench press will be a more effec-
tive CA than the cambered barbell bench press before 
a throwing performance. Considering that the greatest 
activity of the triceps is recorded in the final part of the 
barbell bench press [25], it was assumed that perform-
ing an inverted cambered barbell bench press as a CA 
will contribute to an even greater improvement in subse-
quent throwing performance.

Even though various squats depths have been exam-
ined, there is a lack of studies that evaluate this issue in 
case of upper-body PAPE complexes. Since the muscula-
ture of the upper and lower body differs significantly, it 
is not certain that the influence of the range of motion 
on the upper body PAPE effect will carry over to previ-
ous studies examining the lower body. Therefore, this 
study aimed to investigate the impact of different ranges 
of motion during the bench press exercise performed 
until 10% velocity-loss as a CA on subsequent BPT per-
formance. We hypothesized that the PAPE effect would 
be visible after each applied CA, but the magnitude of 
improvement will be most significant after the reverse 
cambered barbell bench press.

Materials and methods
Experimental approach to the problem
The participants took part in three familiarization ses-
sions and four experimental sessions within three weeks. 
Separate familiarization sessions included the determi-
nation of one-repetition maximum (1RM) load for the 
standard (STD), cambered (CMB), and reverse cam-
bered barbell (RCMB) in a randomized order (at least 
72  h apart, using online software (randomization.org) 
and two sets of the BP performed with the corresponding 
barbell until 10% velocity-loss at 80%1RM. The experi-
mental sessions were performed in randomized order 
(at least 72  h apart), where each participant performed 
a single set of the bench press at 80%1RM until mean 
barbell velocity dropped by 10% as the CA with a STD, 
a CMB, a RCMB barbell or a control condition in which 
the participants did not perform any CA (CTRL) (Fig. 1). 
The load of 80%1RM and 10% velocity-loss during the 
CA was chosen as earlier studies showed high effective-
ness of this procedure in inducing the upper body PAPE 
effect [19, 20]. To assess the PAPE effect, single-sets of 
two repetitions of the BPT at 30%1RM (of the standard 
barbell) were performed 5 min before and after the CA 
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in five-time points with 2 min rest intervals in between. 
Changes in peak power output (PP) and peak barbell 
velocity (PV) were evaluated.

Subjects
Ten resistance-trained fitness specialists and personal 
trainers (age: 26 ± 3 years; body mass: 93.2 ± 9.4  kg; 
height: 181 ± 6  cm; experience in resistance training: 
6.3 ± 2.4; standard bench press 1RM: 144.5 ± 26.2  kg 
and relative strength 1.54 ± 0.2  kg/body mass) partici-
pated in the study. The inclusion criteria were as follows: 
(i) free from neuromuscular and musculoskeletal dis-
orders, (ii) at least three years’ experience in resistance 
training, (iii) relative standard bench press 1RM above 
1.35  kg/body mass. Participants were excluded if they 
reported: (i) irregular participation in resistance train-
ing less than two times a week for the last six months, (ii) 
regular caffeine supplementation, (iii) had no experience 
in cambered barbell bench press. However, it should be 
emphasized that the participants had the most experi-
ence with a standard barbell bench press. Moreover, they 
were asked not to perform any additional resistance exer-
cises at least 48  h before testing to avoid fatigue, main-
tain their usual dietary and sleep habits, and not to use 
any stimulants throughout the study. They were allowed 
to withdraw from the experiment at any moment and 
were informed about the benefits and potential risks of 
the study before providing their written informed con-
sent for participation. The study protocol was approved 
by the Bioethics Committee for Scientific Research at 
the Academy of Physical Education in Katowice, Poland 
(10/2018) and performed according to the ethical stand-
ards of the Declaration of Helsinki, 2013 [26]. The sample 
size was calculated a priori based on a statistical power of 
0.8, an effect size of 0.43, a correlation among repeated 

measures = 0.85, and an alpha level of p < 0.05, taking 
BPT performance as a reference variable [27]. A mini-
mum sample size of 8 individuals was obtained (G*Power, 
Dusseldorf, Germany [version 3.1.9.2]).

Procedures
Familiarization session and 1RM strength tests
Before the main experimental sessions, the 1RM bench 
press tests for each barbell type were performed in ran-
domized order according to the recommendations pro-
posed by Wilk et al. [28, 29]. The participants arrived in 
the laboratory at the same time of the day as the upcom-
ing experimental sessions (in the morning between 9:00 
and 11:00 am). The participants performed a standard-
ized warm-up consisting of cycling on a stationary bike 
with an upper-body component for 5  min (Keiser M3i 
Total Body Trainer, Keiser Corporation, Fresno CA) at 
a resistance of approximately 100 W and cadence within 
70–80 rpm; two circuits of 10 trunk rotations and side-
bends; 10 internal, external and lateral arm swings; 10 
bodyweight squats; 10 push-ups. Next, the participants 
performed 10, 8, and 4 repetitions at 30%, 50%, and 70% 
of their estimated 1RM with 2 min rest intervals. The first 
testing load was set to an estimated 80%1RM and was 
increased by 2.5–5 kg for each subsequent attempt until 
the participant couldn’t perform a lift with proper tech-
nique. A 5-min rest interval was allowed between 1RM 
attempts. If the participant failed, the last set was allowed 
with the load reduced by 2.5–5  kg. Hand placement on 
the barbell was set at 150% individual bi-acromial dis-
tance. All repetitions were performed without bouncing 
the bar off the chest, without intentionally pausing at the 
transition between the eccentric and concentric phases, 
and without raising the hips off the bench. The partici-
pants were instructed to perform each repetition with a 

Fig. 1  Study design. 1RM – one repetition maximum; CA—conditioning activity; STD—standard barbell conditioning activity; CMB—cambered 
barbell conditioning activity; RCMB—reverse cambered barbell conditioning activity; BPT—bench press throw



Page 4 of 8Krzysztofik et al. BMC Sports Science, Medicine and Rehabilitation          (2022) 14:123 

two second duration of the eccentric phase (controlled 
by a metronome) and maximal velocity in the concentric 
phase of the movement [28, 29]. They were verbally moti-
vated to make a maximum effort. The 1RM was defined 
as the highest load completed without any assistance 
from the spotters. All 1RM values were obtained within 
five attempts.

Following the 1RM test, all participants performed two 
sets of the bench press with a particular type of the bar-
bell until a 10% mean velocity-loss at 80%1RM.

Experimental sessions
The participants performed four different testing con-
ditions, 72-h apart in a random order: a single set of a 
STD, CMB or RCMB barbell bench press at 80%1RM, 
with repetitions performed until mean movement veloc-
ity dropped by 10% or a control condition where par-
ticipants did not perform the CA (CTRL). A single-set 
of two repetitions of the BPT on a Smith machine at 
30%1RM (of the standard barbell) was performed 5 min 
before and after the CA at the following time points: 2, 
4, 6, 8, 10  min. The participants began each condition 
by performing an identical warm-up as before the 1RM 
tests. The PAPE effect was evaluated by changes in PP 
and PV (by a linear position transducer) between base-
line and post CA values during the BPT. The repetition 
with a higher value of PP and PV following the CA was 
kept for further analysis.

Measurement of barbell velocity during the conditioning 
activity
Mean barbell velocity during the CA was controlled by 
the GymAware Powertool (Kinetic Performance Tech-
nology, Canberra, Australia), a linear position transducer. 
Previous research showed that this device provides reli-
able and valid kinematic data [30]. The device was placed 
on the floor directly under the barbell, and the external 
end of the cable was attached to the side of the barbell. 
The velocity of the barbell was recorded at 50 Hz. Dur-
ing the CA the participants were asked to perform each 
repetition with a constant duration of two seconds in the 
eccentric phase and as fast as possible during the concen-
tric phase.

Measurement of bench press throw performance
After the warm-up, the participants started the main 
trials. They performed a single set of two repetitions of 
the BPT with a maximal effort at 30% 1RM on a Smith 
machine as a baseline measurement. After a five min rest 
interval, they performed five sets of two repetitions of 
the BPT with two min rest intervals. During the CTRL 
condition, no CA was implemented. Before each trial, the 
participants were instructed to execute each repetition 

without bouncing the barbell off the chest, and with-
out intentionally pausing at the transition between the 
phases. Hand placement on the barbell was set at 150% 
biacromial distance and was carefully replicated dur-
ing each attempt. The PV and PP during the BPT were 
evaluated by a linear position transducer Tendo Power 
Analyzer (Tendo Sport Machines, Trencin, Slovakia). 
This device is a reliable system for measuring move-
ment velocity and power output [31]. The between ses-
sion intra-class correlation coefficient and coefficient of 
variation was 0.97 and 5.6% for PP, while for PV it was 
0.88 and 2.7%, respectively. Due to the high inter-individ-
ual variability in the potentiation responses [32] and the 
individualized recovery time approach [5], the highest 
value obtained post-CA was retained for further analysis.

Statistical analyses
All statistical analysis were performed using SPSS (ver-
sion 25.0; SPSS, Inc., Chicago, IL, USA). The data is 
presented as means with standard deviations (± SD). 
Moreover, the 95% confidence intervals for mean val-
ues and relative differences (i.e. in percentages) between 
baseline and post-CA values are also provided. Statisti-
cal significance was set at p < 0.05. The normality of data 
distribution was checked using Shapiro–Wilk tests. The 
effects of the used CA on the dependent variables were 
examined by two-way repeated-measures ANOVA (4 
conditions × 2 time points [baseline and best post-CA]). 
The effect size was determined by partial eta squared (η2). 
Partial eta squared values were classified as small (0.01 to 
0.059), moderate (0.06 to 0.137) and large (> 0.137) [33]. 
When significant, pairwise comparisons were also con-
ducted using a Bonferroni test. Moreover, the one-way 
ANOVA was performed to assess differences in 1RM 
and range of motion between STD, CMB and RCMB 
barbell conditions. The magnitude of mean differences 
was expressed with standardized effect sizes; thresholds 
for qualitative descriptors of Hedges g was interpreted 
as ≤ 0.20 “small”, 0.21–0.8 “medium”, and > 0.80 as “large” 
[33].

Results
The one-way ANOVA indicated a significant difference 
in 1RM (144.5 ± 26, 138 ± 25, 153 ± 26 kg; p < 0.001) and 
range of motion (36 ± 3.6, 40 ± 3.7, 27 ± 3.8 cm; p < 0.001) 
for the STD, CMB and RCMB, respectively. The time 
course of changes of PP and PV during the BPT are pre-
sented in Figs.  2 and 3; respectively. The best post-CA 
performance was observed after 6.8 ± 2.5 min for CTRL 
condition, 5.2 ± 2.7 min for STD condition, 7.2 ± 2.7 min 
for the CMB condition, and 6.8 ± 1.9 min for the RCMB 
condition.
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The Shapiro–Wilk tests indicated that the normality 
of the data wasn’t violated for PP and PV. The BPT per-
formance after the CAs are presented in Table  1. The 
two-way ANOVA showed significant interaction for PP 
(p < 0.001; η2 = 0.556) and for PV (p = 0.001; η2 = 0.457). 
The post-hoc comparisons revealed a significant increase 
in post-CA PP and PV values during CTRL (p = 0.014 
and p = 0.001), STD (p = 0.001 and p = 0.002), CMB 
(p = 0.005 and p = 0.011), and RCMB (p < 0.001 and 

p < 0.001) conditions compared to baseline. Furthermore, 
there were no significant differences between conditions.

Discussion
The main finding of this study was that the STD bench 
press as a CA led to the greatest enhancement of BPT 
performance (+ 15.9%; ES = 0.54 in PP and + 7.0%; 
ES = 0.71 in PV) within the examined conditions 
(Table  1). Contrary to the initial hypothesis, the RCMB 
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bench press as a CA was the least effective. It led to a 
slight improvement in efficiency (+ 5.6%; ES = 0.14 in PP 
and + 2.2%; ES = 0.31 in PV), comparable with the CTRL 
condition (+ 4.2%; ES = 0.14 in PP and + 2.3%; ES = 0.3 in 
PV). Thus, these results indicate that the range of motion 
has a significant impact on the magnitude of the PAPE 
effect. This suggests that to acutely improve upper-body 
explosive performance, is it recommended to prescribe a 
CA with a similar movement pattern that will follow in 
the subsequent explosive task.

To our knowledge, despite that many studies evaluated 
different back squat depths as a CA [34–36], only two 
studies directly compared its effectiveness in enhancing 
performance [16, 17]. While in the case of upper body 
enhancement complexes, the most commonly used CA is 
the STD bench press [15, 27, 37], and to date, no study 
has considered the impact of a varied range of motion 
on PAPE. It should be noted that during the bench press 
exercise performed with a standard type barbell, the 
range of motion is restricted by the barbell touching the 
chest, while the prime movers are not going through their 
full physiological range of motion [38]. Using a cambered 
barbell, which is U-shaped and creates additional space 
for the chest, enables the movement to a lower end posi-
tion than a standard barbell [39]. In turn, reversing this 
barbell allows for a significantly shorter range of motion.

The results of this study are partially in line with the 
findings of Esformes and Bampauras [17], as the use of 
the STD bench press as a CA led to a greater improve-
ment in BPT performance than the RCMB bench press. 
We also evaluated the effectiveness of the CMB bench 
press as a CA, in which the range of motion was the 
greatest. However in this case, a STD bench press as 
the CA proved to elicit greater PAPE magnitude. The 

analysis of baseline and the highest value obtained 
post-CA irrespective of the rest interval also showed a 
similar pattern of performance enhancement, with the 
highest one obtained after a standard bar CA (+ 7.0–
15.9%; ES = 0.54–0.71), then the CMB (+ 2.6–7.3%; 
ES = 0.19–0.35) and at least after the RCMB bench press 
exercise (+ 2.2–5.6%; ES = 0.14–0.31). It is worth noting 
that the level of performance enhancement during the 
RCMB bench press was similar to the CTRL condition 
(+ 2.3–4.2%; ES = 0.14–0.3), which indicates that subse-
quent sets of BPT may also induce a low magnitude of 
the PAPE effect. On the other hand, a previous study by 
Nibali et al. [40] showed insignificant differences between 
continuous and intermittent measurements post-CA. 
However, it has to be mentioned that in the current 
study, 2-min rest intervals between consecutive post-
CA were used, while in the study of Nibali et al. [40], it 
was 4 min. Therefore, future studies should consider that 
repeatedly performed post-CA evaluations may inadvert-
ently act as a CA, affecting the magnitude of fatigue and/
or potentiation. As our participants were highly trained 
and familiar with the CMB bench press, considering that 
fatigue was individually controlled by the velocity loss 
under all conditions, it seems that the influence of exces-
sive fatigue can be ruled out. This was also confirmed by 
the lowest enhancement of the BPT following the RCMB 
CA. Therefore, these results appear to be related to the 
level of induced potentiation, not to the level of fatigue.

We cannot indicate which physiological mechanisms 
contributed to the observed performance improvement. 
Based on previous research, we can speculate that it is 
related, as indicated by Tsoukos et al. [20] to the neural 
mechanisms (e.g., increased recruitment of motor units 
or increased excitability of motoneurons) instead of other 
suggested mechanisms such as increased: regulatory 
myosin light-chain phosphorylation, muscle temperature 
or intramuscular fluid accumulation [3]. The volume in 
each of the CAs used was low; thus, the effect of tem-
perature or fluid accumulation in the muscles seems 
unlikely. This may be confirmed by the study of Weigert 
et  al. [41] which showed that a single set of resistance 
exercise did not lead to a significant increase in mus-
cle temperature. Furthermore, given that in most cases, 
the peak performance occurred 6 min after the CA, the 
contribution of increased myosin light-chain phospho-
rylation in performance enhancement seems to be insig-
nificant due to its short duration following the CA (~ 28 s 
and a small performance enhancement effect observed 
within ~ 5 min) [42–45]. Therefore, the most likely expla-
nation for the performance enhancement may relate to 
the similarities of the muscular activation between the 
CA and the BPT. We can assume that the RCMB bench 
press led to the greatest activation of the triceps brachii, 

Table 1  Baseline and best post-CA bench press throw 
performance

Results are mean ± SD; *significant difference in comparison to baseline p < 0.05; 
CA conditioning activity; CTRL control condition; STD standard barbell condition; 
CMB cambered barbell condition; RCMB reverse cambered barbell condition; ES 
Hedges g effect size

Condition Baseline Post-CA ES Relative effect (%)

Peak power (W)

 CTRL 1012 ± 338 1063 ± 384* 0.14 4.2 ± 4.5

 STD 955 ± 357 1107 ± 405* 0.54 15.9 ± 9.4

 CMB 991 ± 367 1068 ± 400* 0.19 7.3 ± 5.9

 RCMB 984 ± 358 1036 ± 365* 0.14 5.6 ± 2.1

Peak velocity (m/s)

 CTRL 2.07 ± 0.16 2.12 ± 0.16* 0.30 2.3 ± 1.4

 STD 2.03 ± 0.21 2.16 ± 0.13* 0.71 7.0 ± 6.2

 CMB 2.06 ± 0.15 2.11 ± 0.12* 0.35 2.6 ± 2.8

 RCMB 2.04 ± 0.16 2.09 ± 0.15* 0.31 2.2 ± 1.3
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but also the smallest of the remaining muscles involved 
in the BPT movement such as the pectoralis major and 
anterior deltoid [46]. As a result, the improvement in 
the BPT performance under this condition was small. In 
turn, a slightly better effect was recorded after the CMB 
bench press CA, perhaps because the barbell enables a 
greater stretch of the chest and shoulder muscles, thus 
providing additional activation of the above-mentioned 
muscles compared to the RCMB barbell bench press. On 
the other hand, the STD bench press CA turned out to be 
optimal, perhaps due to the similarity of the movement 
to the BPT, thus probably providing an adequate level 
and similar pattern of muscle excitation. This may also 
explain parallel squats’ high effectiveness in jump height 
enhancement due to the similarity in preferred knee 
flexion degree during vertical jump tests [17, 47]. There-
fore, when we summarize the results of our investiga-
tion and the studies that examined various squat depths, 
it seems that when a range of motion exceeds a certain 
threshold, the subsequent performance shows no further 
improvement, or it may even decrease [15]. The results 
of this study indicate that the range of motion affects 
the PAPE response and confirm the statement of simi-
larity requirements between the CA and the subsequent 
explosive activity to obtain the greatest enhancement in 
performance.

In addition to its strengths, the present study has sev-
eral limitations which need to be addressed: (1) only 
male, strength trained participants took part in this study. 
Therefore, bearing in mind high inter-individual variabil-
ity in the PAPE responses [32] and also possible differ-
ences in magnitude of PAPE between post-CA activities 
[15], caution is needed when extrapolating these results 
to other populations and conditions; (2) in each of the 
conditions used, the participants performed only a sin-
gle set, at one intensity (80%1RM) and with one prede-
termined movement velocity-loss (by 10%), (3) we did 
not evaluate any of the physiological mechanisms which 
underlie the PAPE effect. Therefore, no definite conclu-
sions can be derived from the study, besides the fact that 
the results of this study indicate that the range of motion 
affects the PAPE response and confirm the statement of 
similarity requirements between the CA and the subse-
quent explosive activity.

Conclusions
This study demonstrated that the range of motion of 
the CA has a significant impact on the magnitude of the 
PAPE response. Therefore, individuals seeking to acutely 
enhance their upper-body explosive performance should 
consider that the CA and subsequent explosive task 
should be as similar as possible in terms of movement 
pattern to maximize the PAPE effect.
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