Xu J, Lombardi G, Jiao W, Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med. 2016;46(8):1165–82.
Article
Google Scholar
Chien KY, Chang WG, Sanders ME, Chen CH, Wu WC, Chen WC. Effects of land vs water jump exercise: implications for exercise design targeting bone health. Scand J Med Sci Sports. 2019;29(6):826–34.
Article
Google Scholar
Heywood S, McClelland J, Mentiplay B, Geigle P, Rahmann A, Clark R. Effectiveness of aquatic exercise in improving lower limb strength in musculoskeletal conditions: a systematic review and meta-analysis. Arch Phy Me Rehabil. 2017;98(1):173–86.
Article
Google Scholar
Colado JC, García-Massó X, González L-M, Triplett N, Mayo C, Merce J. Two-leg squat jumps in water: an effective alternative to dry land jumps. Int J Sports Med. 2010;31(02):118–22.
Article
CAS
Google Scholar
Triplett NT, Colado JC, Benavent J, et al. Concentric and impact forces of single-leg jumps in an aquatic environment versus on land. Med Sci Sports Exerc. 2009;41(9):1790–6.
Article
Google Scholar
Alberton CL, Finatto P, Pinto SS, et al. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land. J Sports Sci. 2015;33(8):795–805.
Article
Google Scholar
Chang WG, Chen WC, Kan NW, Chien KY. Kinetic characteristics of postmenopausal women in water and on land jumps. Sports Exerc Res. 2021;23(1):83–95.
Google Scholar
Way KL, Sultana RN, Sabag A, Baker MK, Johnson NA. The effect of high Intensity interval training versus moderate intensity continuous training on arterial stiffness and 24 h blood pressure responses: a systematic review and meta-analysis. J Sci Med Sport. 2019;22(4):385–91.
Article
Google Scholar
Kistler-Fischbacher M, Weeks BK, Beck BR. The effect of exercise intensity on bone in postmenopausal women (part 1): a systematic review. Bone. 2021;143:115696.
Article
Google Scholar
Leirós-Rodríguez R, Romo-Pérez V, García-Soidán JL, García-Liñeira J. Percentiles and reference values for the accelerometric assessment of static balance in women aged 50–80 years. Sensors. 2020;20(3):940.
Article
Google Scholar
Oliveira DSD, Oltramari G, Schuster RC, Oliveira DTDCD. Comparison of static balance of elderly women through two methods: Computerized photogrammetry and accelerometer. Fisioter Mov. 2015;28:349–56.
Article
Google Scholar
Leirós-Rodríguez R, Romo-Pérez V, García-Soidán JL. Validity and reliability of a tool for accelerometric assessment of static balance in women. Eur J Physiother. 2017;19(4):243–8.
Article
Google Scholar
García-Liñeira J, García-Soidán JL, Romo-Pérez V, Leirós-Rodríguez R. Reliability of accelerometric assessment of balance in children aged 6–12 years. BMC Pediatr. 2020;20(1):1–8.
Article
Google Scholar
Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed. 2006;10(1):156–67.
Article
Google Scholar
Mapelli A, Zago M, Fusini L, Galante D, Colombo A, Sforza C. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture. 2014;39(1):460–5.
Article
Google Scholar
Santos-Rocha R, Veloso A, Machado ML. Analysis of ground reaction forces in step exercise depending on step pattern and stepping rate. J Strength Cond Res. 2009;23(1):209–24.
Article
Google Scholar
Elvin NG, Elvin AA, Arnoczky SP. Correlation between ground reaction force and tibial acceleration in vertical jumping. J Appl Biomech. 2007;23(3):180–9.
Article
Google Scholar
Veras L, Diniz-Sousa F, Boppre G, et al. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos Int. 2020;31(7):1239–50.
Article
CAS
Google Scholar
Setuain I, Martinikorena J, Gonzalez-Izal M, et al. Vertical jumping biomechanical evaluation through the use of an inertial sensor-based technology. J Sports Sci. 2016;34(9):843–51.
Article
CAS
Google Scholar
Simons C, Bradshaw EJ. Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks? Sports Biomech. 2016;15(1):76–88.
Article
Google Scholar
Aittasalo M, Vähä-Ypyä H, Vasankari T, Husu P, Jussila A-M, Sievänen H. Mean amplitude deviation calculated from raw acceleration data: a novel method for classifying the intensity of adolescents’ physical activity irrespective of accelerometer brand. BMC Sports Sci Med Rehabil. 2015;7(1):1–7.
Article
Google Scholar
Vähä-Ypyä H, Vasankari T, Husu P, Suni J, Sievänen H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin Physiol Funct Imaging. 2015;35(1):64–70.
Article
Google Scholar
Neugebauer JM, Collins KH, Hawkins DA. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations. PLoS ONE. 2014;9(6):e99023.
Article
Google Scholar
Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997;44(3):136–47.
Article
CAS
Google Scholar
Hollville E, Couturier A, Guilhem G, Rabita G. A novel accelerometry-based metric to improve estimation of whole-body mechanical load. Sensors. 2021;21(10):3398.
Article
Google Scholar
Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc. 2007;39(5):822–9.
Article
Google Scholar
Kruel LF, Peyré-Tartaruga LA, Coertjens M, Dias AB, Da Silva RC, Rangel AC. Using heart rate to prescribe physical exercise during head-out water immersion. J Strength Cond Res. 2014;28(1):281–9.
Article
Google Scholar
Acheampong B, Parra DA, Aliyu MH, Moon TD, Soslow JH. Smartphone interfaced handheld echocardiography for focused assessment of ventricular function and structure in children: a pilot study. Echocardiography. 2020;37(1):96–103.
Article
Google Scholar
Higgins S, Higgins LQ, Vallabhajosula S. Site-specific concurrent validity of the ActiGraph GT9X link in the estimation of activity-related skeletal loading. Med Sci Sports Exerc. 2021;53(5):951–9.
Article
CAS
Google Scholar
Godfrey A, Conway R, Meagher D, ÓLaighin G. Direct measurement of human movement by accelerometry. Med Eng Phys. 2008;30(10):1364–86.
Article
CAS
Google Scholar
Alberton CL, Zaffari P, Pinto SS, et al. Water-based exercises in postmenopausal women: vertical ground reaction force and oxygen uptake responses. Eur J Sport Sci. 2021;21(3):331–40.
Article
Google Scholar
Nagle EF, Sanders ME, Becker BE. Aquatic exercise for health: probing the depths of HIIT for cardometabolic training. ACSM’s Health Fit J. 2019;23(4):14–26.
Article
Google Scholar
Nagle EF, Sanders ME, Franklin BA. Aquatic high intensity interval training for cardiometabolic health: benefits and training design. Am J Lifestyle Medi. 2017;11(1):64–76.
Article
Google Scholar
Qin X, Song Y, Zhang G, Guo F, Zhu W. Quantifying swimming activities using accelerometer signal processing and machine learning: a pilot study. Biomed Signal Process Control. 2022;71:103136.
Article
Google Scholar