Iannetta D, Keir DA, Fontana FY, Inglis EC, Mattu AT, Paterson DH, Pogliaghi S, Murias JM. Evaluating the Accuracy of Using Fixed Ranges of METs to Categorize Exertional Intensity in a Heterogeneous Group of Healthy Individuals: Implications for Cardiorespiratory Fitness and Health Outcomes. Sports Med. 2021;51:2411–21. doi:https://doi.org/10.1007/s40279-021-01476-z. Epub 2021 Apr 26. PMID: 33900580.
Article
PubMed
Google Scholar
Deborah R, Jonathan KE, Gary L, Meir. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription Tenth edition. Philadelphia: Wolters Kluwe; 2018.
Google Scholar
Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. European Association for Cardiovascular Prevention and Rehabilitation; American Association of Cardiovascular and Pulmonary Rehabilitation; Canadian Association of Cardiac Rehabilitation. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur J Prev Cardiol. 2013;20:442–67. doi: 10.1177/2047487312460484. Epub 2012 Oct 26. PMID: 23104970.
Article
Google Scholar
Bjarnason-Wehrens B, Nebel R, Jensen K, Hackbusch M, Grilli M, Gielen S, Schwaab B, Rauch B, German Society of Cardiovascular Prevention and Rehabilitation (DGPR). Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: The Cardiac Rehabilitation Outcome Study in Heart Failure (CROS-HF): A systematic review and meta-analysis. Eur J Prev Cardiol. 2020;27:929–52. doi: 10.1177/2047487319854140. Epub 2019 Jun 8. PMID: 31177833; PMCID: PMC7272131.
Article
Google Scholar
JCS Joint Working Group. Guidelines for rehabilitation in patients with cardiovascular disease (JCS 2012). Circ J.. 2014;78:2022-93. doi: https://doi.org/10.1253/circj.cj-66-0094. PMID: 25047729.
Hansen D, Abreu A, Ambrosetti M, Cornelissen V, Gevaert A, Kemps H, Laukkanen JA, Pedretti R, Simonenko M, Wilhelm M, Davos CH, Doehner W, Iliou MC, Kränkel N, Völler H, Piepoli M. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2022;29:230–245. doi: https://doi.org/10.1093/eurjpc/zwab007. PMID: 34077542.
Whipp BJ, Davis JA, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:217–221. doi: https://doi.org/10.1152/jappl.1981.50.1.217. PMID: 6782055.
Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–996. doi: https://doi.org/10.1002/cphy.c100072. PMID: 23798293.
Boone J, Bourgois J. The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues. Sports Med. 2012;42:511–526. doi: https://doi.org/10.2165/11599690-000000000-00000. PMID: 22571502.
Burtscher M. Exercise limitations by the oxygen delivery and utilization systems in aging and disease: coordinated adaptation and deadaptation of the lung-heart muscle axis - a mini-review. Gerontology. 2013;59:289–96. doi: 10.1159/000343990. Epub 2012 Nov 24. PMID: 23182831.
Article
Google Scholar
Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental V̇O2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab. 2018;43:882–892. doi: https://doi.org/10.1139/apnm-2017-0826. Epub 2018 Mar 23. PMID: 29570982.
Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50 + years of controversy. J Physiol. 2021;599:737–767. doi: 10.1113/JP279963. Epub 2020 Nov 19. PMID: 33112439.
Koike A, Yajima T, Adachi H, Shimizu N, Kano H, Sugimoto K, Niwa A, Marumo F, Hiroe M. Evaluation of exercise capacity using submaximal exercise at a constant work rate in patients with cardiovascular disease. Circulation. 1995;91:1719–1724. doi: https://doi.org/10.1161/01.cir.91.6.1719. PMID: 7882479.
Chatterjee NA, Murphy RM, Malhotra R, Dhakal BP, Baggish AL, Pappagianopoulos PP, Hough SS, Semigran MJ, Lewis GD. Prolonged mean V̇O2 response time in systolic heart failure: an indicator of impaired right ventricular-pulmonary vascular function. Circ Heart Fail. 2013;6:499–507. doi: 10.1161/CIRCHEARTFAILURE.112.000157. Epub 2013 Apr 9. PMID: 23572493; PMCID: PMC5935663.
Article
CAS
Google Scholar
Hearon CM Jr, Sarma S, Dias KA, Hieda M, Levine BD. Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction. Heart. 2019;105:1552–8. doi:https://doi.org/10.1136/heartjnl-2019-314797. Epub 2019 Jun 17. PMID: 31208971.
Article
CAS
PubMed
Google Scholar
Swanson GD, Hughson RL. On the modeling and interpretation of oxygen uptake kinetics from ramp work rate tests. J Appl Physiol (1985). 1988;65:2453–2458. doi: https://doi.org/10.1152/jappl.1988.65.6.2453. PMID: 3215845.
Boone J, Koppo K, Bouckaert J. The V̇O2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respir Physiol Neurobiol. 2008;31:161:291–7. doi:https://doi.org/10.1016/j.resp.2008.03.008. Epub 2008 Mar 26. PMID: 18448396.
Article
Google Scholar
Hughson RL, Inman MD. Oxygen uptake kinetics from ramp work tests: variability of single test values. J Appl Physiol. 1986;61:373–6.
Article
CAS
Google Scholar
Markovitz GH, Sayre JW, Storer TW, Cooper CB. On issues of confidence in determining the time constant for oxygen uptake kinetics. Br J Sports Med. 2004;38:553–60.
Article
CAS
Google Scholar
The Japanese Association of Cardiac Rehabilitation, Standard Cardiac Rehabilitation Program Writing Committee. Cardiac Rehabilitation Standard Program for Acute Myocardial Infarction. (2013) from the Japanese Association of Cardiac Rehabilitation - In the Recovery Phase of Myocardial Infarction -. Retrieved April 19, 2022 from https://www.jacr.jp/web/en/standard-program/.
Koike A, Hiroe M, Adachi H, Yajima T, Yamauchi Y, Nogami A, Ito H, Miyahara Y, Korenaga M, Marumo F. Oxygen uptake kinetics are determined by cardiac function at onset of exercise rather than peak exercise in patients with prior myocardial infarction. Circulation 1994;90:2324–2332. doi: https://doi.org/10.1161/01.cir.90.5.2324. PMID: 7955190.
Iannetta D, Murias JM, Keir DA. A Simple Method to Quantify the V̇O2 Mean Response Time of Ramp-Incremental Exercise. Med Sci Sports Exerc. 2019;51:1080–1086. doi: https://doi.org/10.1249/MSS.0000000000001880. PMID: 30601794.
Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8:115. doi:https://doi.org/10.1186/1479-5868-8-115. Pubmed PMID: 22018588. Pubmed Central PMCID: PMC3214824.
Article
PubMed
PubMed Central
Google Scholar
Kominami K, Nishijima H, Imahashi K, Katsuragawa T, Murakami M, Akino M. Gas exchange threshold to guide exercise training intensity of older individuals during cardiac rehabilitation. Med (Baltimore). 2021;100:e27540. doi:https://doi.org/10.1097/MD.0000000000027540. PMID: 34678888; PMCID: PMC8542148.
Article
CAS
Google Scholar
Sue DY, Wasserman K, Moricca RB, Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988;94:931–8. Pubmed PMID: 3180897.
Article
CAS
Google Scholar
Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985). 1986;60:2020–7. Pubmed PMID: 3087938.
Article
CAS
Google Scholar
Nishijima H, Kominami K, Kondo K, Akino M, Sakurai M. New method for the mathematical derivation of the ventilatory anaerobic threshold: a retrospective study. BMC Sports Sci Med Rehabil. 2019;11:10. doi:https://doi.org/10.1186/s13102-019-0122-z. PMID: 31285827. Pubmed Central PMCID: PMC6592010.
Article
PubMed
PubMed Central
Google Scholar
Nishijima H, Kondo K, Yonezawa K, Hashimoto H, Sakurai M. Quantification and physiological significance of the rightward shift of the V-slope during incremental cardiopulmonary exercise testing. BMC Sports Sci Med Rehabil. 2017;9:9. doi:https://doi.org/10.1186/s13102-017-0073-1. PMID: 28435685. Pubmed Central PMCID: PMC5397810.
Article
PubMed
PubMed Central
Google Scholar
Tomioka K, Iwamoto J, Saeki K, Okamoto N. Reliability and validity of the International Physical Activity Questionnaire (IPAQ) in elderly adults: the Fujiwara-kyo study. J Epidemiol. 2011;21:459–65. doi:https://doi.org/10.2188/jea.je20110003. Pubmed PMID: 21946625. Pubmed Central PMCID: PMC3899462.
Article
PubMed
PubMed Central
Google Scholar
Rossiter HB. Exercise: Kinetic considerations for gas exchange. Compr Physiol. 2011;1:203–244. doi: https://doi.org/10.1002/cphy.c090010. PMID: 23737170.
Barmeyer A, Müllerleile K, Mortensen K, Meinertz T. Diastolic dysfunction in exercise and its role for exercise capacity. Heart Fail Rev. 2009;14:125–34. doi:https://doi.org/10.1007/s10741-008-9105-y. Epub 2008 Aug 29. PMID: 18758943.
Article
CAS
PubMed
Google Scholar
Mitchell JH. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors. Am J Physiol Regul Integr Comp Physiol 2017;312:R851-R863. doi: https://doi.org/10.1152/ajpregu.00042.2017. Epub 2017 Apr 5. PMID: 28381455.
Hultgren HN. The effect of increased venous return on the venous pressure in patients with congestive heart failure. Am Heart J. 1950;39:592–603. doi: https://doi.org/10.1016/0002-8703(50)90256-0. PMID: 15410663.
Alonso-Gómez AM, Tojal Sierra L, Fortuny Frau E, Goicolea Güemez L, Aboitiz Uribarri A, Portillo MP, Toledo E, Schröder H, Salas-Salvadó J, Arós Borau F. Diastolic dysfunction and exercise capacity in patients with metabolic syndrome and overweight/obesity. Int J Cardiol Heart Vasc. 2018;22:67–72. doi: 10.1016/j.ijcha.2018.12.010. PMID: 30619930; PMCID: PMC6314243.
PubMed
PubMed Central
Google Scholar
Grewal J, McCully RB, Kane GC, Lam C, Pellikka PA. Left ventricular function and exercise capacity. JAMA. 2009;301:286–94. doi:https://doi.org/10.1001/jama.2008.1022. PMID: 19155455; PMCID: PMC2862454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JF, Barrett-O’Keefe Z, Nelson AD, Garten RS, Ryan JJ, Nativi-Nicolau JN, Richardson RS, Wray DW. Impaired skeletal muscle vasodilation during exercise in heart failure with preserved ejection fraction. Int J Cardiol. 2016;211:14–21. doi:https://doi.org/10.1016/j.ijcard.2016.02.139. Epub 2016 Mar 2. PMID: 26970959; PMCID: PMC4834272.
Article
PubMed
PubMed Central
Google Scholar
Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–397. doi: https://doi.org/10.1161/CIRCULATIONAHA.106.634949. PMID: 17242296.
Green S, Egaña M, Baldi JC, Lamberts R, Regensteiner JG. Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res. 2015;2015:654204. doi: 10.1155/2015/654204. Epub 2015 Mar 30. PMID: 25918732; PMCID: PMC4396731.
Olive JL, DeVan AE, McCully KK. The effects of aging and activity on muscle blood flow. Dyn Med. 2002;1:2. doi: https://doi.org/10.1186/1476-5918-1-2. Erratum in: Dyn Med. 2003 Jul 8;2(1):3. PMID: 12605712; PMCID: PMC150384.
Hearon CM Jr, Dinenno FA. Regulation of skeletal muscle blood flow during exercise in ageing humans. J Physiol. 2016;594:2261–22273. doi: 10.1113/JP270593. Epub 2015 Nov 2. PMID: 26332887; PMCID: PMC4933119.
Behnke BJ, Ramsey MW, Stabley JN, Dominguez JM 2nd, Davis RT 3rd, McCullough DJ, Muller-Delp JM, Delp MD. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology. J Appl Physiol (1985). 2012;113:1699–708. doi: 10.1152/japplphysiol.01025.2012. Epub 2012 Oct 4. PMID: 23042906; PMCID: PMC3544508.
Article
CAS
Google Scholar
Brierley EJ, Johnson MA, James OF, Turnbull DM. Effects of physical activity and age on mitochondrial function. QJM. 1996;89:251–258. doi: https://doi.org/10.1093/qjmed/89.4.251. PMID: 8733511.
Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, Coen PM. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle. 2018;9:279–94. doi:https://doi.org/10.1002/jcsm.12272. Epub 2018 Jan 24. PMID: 29368427; PMCID: PMC5879963.
Article
PubMed
PubMed Central
Google Scholar
Schütt F, Aretz S, Auffarth GU, Kopitz J. Moderately reduced ATP levels promote oxidative stress and debilitate autophagic and phagocytic capacities in human RPE cells. Invest Ophthalmol Vis Sci. 2012;53:5354–5361. doi: https://doi.org/10.1167/iovs.12-9845. PMID: 22789922.
Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112:2686–2695. doi: 10.1161/CIRCULATIONAHA.105.554360. Erratum in: Circulation. 2021 Dec 7;144(23):e489. PMID: 16246967.
Schrauwen P, Hesselink MK. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes. 2004;53:1412–1417. doi: https://doi.org/10.2337/diabetes.53.6.1412. PMID: 15161742.
Iannetta D, de Almeida Azevedo R, Keir DA, Murias JM. Establishing the V̇o2 versus constant-work-rate relationship from ramp-incremental exercise: simple strategies for an unsolved problem. J Appl Physiol (1985). 2019;127:1519–27. doi:https://doi.org/10.1152/japplphysiol.00508.2019. Epub 2019 Oct 3. PMID: 31580218; PMCID: PMC6962604.
Article
Google Scholar
Xu F, Rhodes EC. Oxygen uptake kinetics during exercise. Sports Med. 1999;27:313–327. doi: https://doi.org/10.2165/00007256-199927050-00003. PMID: 10368878.
Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of V̇O2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43:2046–2062. doi: https://doi.org/10.1249/MSS.0b013e31821fcfc1. PMID: 21552162.
Russell A, Wadley G, Snow R, Giacobino JP, Muzzin P, Garnham A, Cameron-Smith D. Slow component of V̇O2 kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase activity. Int J Obes Relat Metab Disord. 2002;26:157–164. doi: https://doi.org/10.1038/sj.ijo.0801885. PMID: 11850746.
Iannetta D, Inglis EC, Mattu AT, Fontana FY, Pogliaghi S, Keir DA, Murias JM. A Critical Evaluation of Current Methods for Exercise Prescription in Women and Men. Med Sci Sports Exerc. 2020;52:466–473. doi: https://doi.org/10.1249/MSS.0000000000002147. PMID: 31479001.
Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43:613–625. doi: https://doi.org/10.1007/s40279-013-0045-x. PMID: 23620244.
Hansen D, Bonné K, Alders T, Hermans A, Copermans K, Swinnen H, Maris V, Jansegers T, Mathijs W, Haenen L, Vaes J, Govaerts E, Reenaers V, Frederix I, Dendale P. Exercise training intensity determination in cardiovascular rehabilitation: Should the guidelines be reconsidered? Eur J Prev Cardiol. 2019;26:1921–8. doi: 10.1177/2047487319859450. Epub 2019 Jun 20. PMID: 31219704.
Article
Google Scholar