Starkes JL. Skill in field hockey - the nature of the cognitive advantage. J Sport Exercise Psy. 1987;9(2):146–60.
Google Scholar
Taylor L, Watkins SL, Marshall H, Dascombe BJ, Foster J. The impact of different environmental conditions on cognitive function: a focused review. Front Physiol. 2015;6:372. https://doi.org/10.3389/fphys.2015.00372.
Article
PubMed
Google Scholar
MacLeod H, Sunderland C. Fluid balance and hydration habits of elite female field hockey players during consecutive international matches. J Strength Cond Res. 2009;23(4):1245–51. https://doi.org/10.1519/JSC.0b013e318192b77a.
Article
PubMed
Google Scholar
MacLeod H, Sunderland C. Previous-day hypohydration impairs skill performance in elite female field hockey players. Scand J Med Sci Sports. 2012;22(3):430–8. https://doi.org/10.1111/j.1600-0838.2010.01230.x.
Article
PubMed
CAS
Google Scholar
Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240–9.
Article
PubMed
CAS
Google Scholar
McMorris T, Swain J, Smith M, Corbett J, Delves S, Sale C, et al. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int J Psychophysiol. 2006;61(2):204–15.
Article
PubMed
Google Scholar
Coyle EF, Gonzalez-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29(2):88–92.
Article
PubMed
CAS
Google Scholar
Sunderland C, Nevill ME. High-intensity intermittent running and field hockey skill performance in the heat. J Sports Sci. 2005;23(5):531–40. https://doi.org/10.1080/02640410410001730197.
Article
PubMed
Google Scholar
Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327–33. https://doi.org/10.1136/bjsm.2007.034207.
Article
PubMed
CAS
Google Scholar
Morris JG, Nevill ME, Lakomy HKA, Nicholas C, Williams C. Effect of a hot environment on performance of prolonged, intermittent, high intensity shuttle running. J Sports Sci. 1998;16:677–86.
Article
Google Scholar
Morris JG, Nevill ME, Boobis LH, Macdonald IA, Williams C. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C. Int J Sports Med. 2005;26(10):805–14.
Article
PubMed
CAS
Google Scholar
Tyler C, Sunderland C. The effect of ambient temperature on the reliability of a preloaded treadmill time-trial. Int J Sports Med. 2008;29(10):812–6.
Article
PubMed
CAS
Google Scholar
Hancock PA. Heat stress impairment of mental performance: a revision of tolerance limits. Aviat Space Environ Med. 1981;52(3):177–80.
PubMed
CAS
Google Scholar
Hancock PA. Task categorization and the limits of human performance in extreme heat. Aviat Space Environ Med. 1982;53(8):778–84.
PubMed
CAS
Google Scholar
Hocking C, Silberstein RB, Lau WM, Stough C, Roberts W. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):719–34.
Article
PubMed
CAS
Google Scholar
Nunneley SA, Reader DC, Maldonado RJ. Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviat Space Environ Med. 1982;53(7):623–8.
PubMed
CAS
Google Scholar
Nunneley SA, Dowd PJ, Myhre LG, Stribley RF, McNee RC. Tracking-task performance during heat stress simulating cockpit conditions in high-performance aircraft. Ergonomics. 1979;22(5):549–55. https://doi.org/10.1080/00140137908924639.
Article
PubMed
CAS
Google Scholar
Bell CR, Provins KA, Hiorns RW. Visual and auditory vigilance during exposure to hot and humd conditions. Ergonomics. 1964;7(3):279–88. https://doi.org/10.1080/00140136408930747.
Article
Google Scholar
Poulton EC, Kerslake DM. Initial stimulating effect of warmth upon perceptual efficiency. Aerospace medicine. 1965;36:29–32.
PubMed
CAS
Google Scholar
Simmons SE, Saxby BK, McGlone FP, Jones DA. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. Eur J Appl Physiol. 2008;104(2):271–80. https://doi.org/10.1007/s00421-008-0677-y.
Article
PubMed
Google Scholar
Hancock PA. The effect of skill on performance under an environmental stressor. Aviat Space Environ Med. 1986;57(1):59–64.
PubMed
CAS
Google Scholar
Gaoua N, Racinais S, Grantham J, El Massioui F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int J Hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2011;27(1):1–9. https://doi.org/10.3109/02656736.2010.516305.
Article
PubMed
PubMed Central
Google Scholar
Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2003;19(3):355–72. https://doi.org/10.1080/0265673021000054630.
Article
PubMed
CAS
Google Scholar
Cian C, Barraud PA, Melin B, Raphel C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol. 2001;42(3):243–51.
Article
PubMed
CAS
Google Scholar
Cian C, Koulmann N, Barraud PA, Raphel C, Jimenez C, Melin B. Influence of variations in body hydration on cognitive function: effect of hyperhydration, heat stress, and exercise-induced dehydration. J Psychophysiol. 2000;14(1):29–36. https://doi.org/10.1027//0269-8803.14.1.29.
Article
Google Scholar
Baker LB, Dougherty KA, Chow M, Kenney WL. Progressive dehydration causes a progressive decline in basketball skill performance. Med Sci Sports Exerc. 2007;39(7):1114–23. https://doi.org/10.1249/mss.0b013e3180574b02.
Article
PubMed
Google Scholar
Gopinathan PM, Pichan G, Sharma VM. Role of dehydration in heat stress-induced variations in mental performance. Arch Environ Health. 1988;43(1):15–7.
Article
PubMed
CAS
Google Scholar
Sharma VM, Sridharan K, Pichan G, Panwar MR. Influence of heat-stress induced dehydration on mental functions. Ergonomics. 1986;29(6):791–9. https://doi.org/10.1080/00140138608968315.
Article
PubMed
CAS
Google Scholar
Edwards AM, Mann ME, Marfell-Jones MJ, Rankin DM, Noakes TD, Shillington DP. Influence of moderate dehydration on soccer performance: physiological responses to 45 min of outdoor match-play and the immediate subsequent performance of sport-specific and mental concentration tests. Br J Sports Med. 2007;41(6):385–91.
Article
PubMed
PubMed Central
Google Scholar
Serwah N, Marino FE. The combined effects of hydration and exercise heat stress on choice reaction time. J Sci Med Sport. 2006;9(1–2):157–64. https://doi.org/10.1016/j.jsams.2006.03.006.
Article
PubMed
CAS
Google Scholar
Tomporowski PD, Beasman K, Ganio MS, Cureton K. Effects of dehydration and fluid ingestion on cognition. Int J Sports Med. 2007;28(10):891–6. https://doi.org/10.1055/s-2007-965004.
Article
PubMed
CAS
Google Scholar
Gaoua N. Cognitive function in hot environments: a question of methodology. Scand J Med Sci Sports. 2010;20(Suppl 3):60–70. https://doi.org/10.1111/j.1600-0838.2010.01210.x.
Article
PubMed
Google Scholar
Gaoua N, Grantham J, El Massioui F, Girard O, Racinais S. Cognitive decrements do not follow neuromuscular alterations during passive heat exposure. Int J Hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2011;27(1):10–9. https://doi.org/10.3109/02656736.2010.519371.
Article
PubMed
Google Scholar
Grego F, Vallier JM, Collardeau M, Rousseu C, Cremieux J, Brisswalter J. Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise. Int J Sports Med. 2005;26(1):27–33. https://doi.org/10.1055/s-2004-817915.
Article
PubMed
CAS
Google Scholar
McMorris T, Graydon J. The effect of exercise on the decision-making performance of experienced and inexperienced soccer players. Res Q Exerc Sport. 1996;67(1):109–14.
Article
PubMed
CAS
Google Scholar
McMorris T, Graydon J. The effect of exercise on cognitive performance in soccer-specific tests. J Sports Sci. 1997;15(5):459–68.
Article
PubMed
CAS
Google Scholar
McMorris T, Myers S, MacGillivary WW, Sexsmith JR, Fallowfield J, Graydon J, et al. Exercise, plasma catecholamine concentrations and decision-making performance of soccer players on a soccer-specific test. J Sports Sci. 1999;17(8):667–76.
Article
PubMed
CAS
Google Scholar
Brisswalter J, Durand M, Delignieres D, Legros P. Optimal and non-optimal demand in a dual task of pedalling and simple reaction time: effects on energy expenditure and cognitive function. J Hum Mov Stud. 1995;29:15–34.
Google Scholar
Hogervorst E, Riedel W, Jeukendrup A, Jolles J. Cognitive performance after strenuous physical exercise. Percept Mot Skills. 1996;83(2):479–88. https://doi.org/10.2466/pms.1996.83.2.479.
Article
PubMed
CAS
Google Scholar
Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87–101. https://doi.org/10.1016/j.brainres.2012.02.068.
Article
PubMed
CAS
Google Scholar
Chang YK, Chi L, Etnier JL, Wang CC, Chu CH, Zhou CL. Effect of acute aerobic exercise on cognitive performance: role of cardiovascular fitness. Psychol Sport Exerc. 2014;15(5):464–70. https://doi.org/10.1016/j.psychsport.2014.04.007.
Article
Google Scholar
Taylor L, Fitch N, Castle P, Watkins S, Aldous J, Sculthorpe N, et al. Exposure to hot and cold environmental conditions does not affect the decision making ability of soccer referees following an intermittent sprint protocol. Front Physiol. 2014;5:185. https://doi.org/10.3389/fphys.2014.00185.
Article
PubMed
PubMed Central
Google Scholar
Watkins SL, Castle P, Mauger AR, Sculthorpe N, Fitch N, Aldous J, et al. The effect of different environmental conditions on the decision-making performance of soccer goal line officials. Res Sports Med. 2014;22(4):425–37. https://doi.org/10.1080/15438627.2014.948624.
Article
PubMed
Google Scholar
Drust B, Reilly T, Cable NT. Physiological responses to laboratory-based soccer-specific intermittent and continuous exercise. J Sports Sci. 2000;18(11):885–92.
Article
PubMed
CAS
Google Scholar
Hancock PA, Warm JS. A dynamic model of stress and sustained attention. Hum Factors. 1989;31(5):519–37.
Article
PubMed
CAS
Google Scholar
Jones AM, Doust JH. A comparison of three treadmill protocols for the determination of maximal aerobic power in runners. J Sport Sci. 1996;14:89.
Article
Google Scholar
Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–301.
Article
PubMed
CAS
Google Scholar
Cooper SB, Bandelow S, Morris JG, Nevill ME. Reliability of a battery of cognitive function tests in an adolescent population. J Sports Sci. 2015;33(Suppl 1):41–3.
Google Scholar
Macleod H, Sunderland C. Reliability of the physiological and metabolic responses to a field hockey specific treadmill protocol for elite female players. J Sports Med Phys Fitness. 2012;52(4):351–8.
PubMed
CAS
Google Scholar
MacLeod H, Bussell C, Sunderland C. Time-motion analysis of elite women's field hockey, with particular reference to maximum intensity movement patterns. Int J Perform Anal Sport. 2007;7(2):1–12.
Article
Google Scholar
Macutkiewicz D, Sunderland C. The use of GPS to evaluate activity profiles of elite women hockey players during match-play. J Sports Sci. 2011;29(9):967–73. https://doi.org/10.1080/02640414.2011.570774.
Article
PubMed
Google Scholar
Nicholas CW, Nuttall FE, Williams C. The Loughborough intermittent shuttle test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97–104.
Article
PubMed
CAS
Google Scholar
Bandelow S, Maughan R, Shirreffs S, Ozgunen K, Kurdak S, Ersoz G, et al. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scand J Med Sci Sports. 2010;20(Suppl 3):148–60. https://doi.org/10.1111/j.1600-0838.2010.01220.x.
Article
PubMed
Google Scholar
Stroop JR. Studies of interference in serial verbal reactions. J Exp Psych. 1935;18(6):643–62.
Article
Google Scholar
Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J, et al. Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc. 2008;40(10):1841–51. https://doi.org/10.1249/MSS.0b013e31817bb8b7.
Article
PubMed
CAS
Google Scholar
Sternberg S. Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci. 1969;57:421–57.
PubMed
CAS
Google Scholar
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
Article
PubMed
CAS
Google Scholar
Dill DB, Costill DL. Calculation of percentage changes in volume of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247–8.
Article
PubMed
CAS
Google Scholar
Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.
Article
PubMed
Google Scholar
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9.
Article
PubMed
CAS
Google Scholar
van Zomeren AH, Brouwer WH. Assessment of attention. In: Crawford JR, Parker D, McKinlay WW, editors. A handbook of neuropsychological assessment. Hove. UK: Psychology Press; 1992. p. 241–66.
Google Scholar
Ely BR, Sollanek KJ, Cheuvront SN, Lieberman HR, Kenefick RW. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance. Eur J Appl Physiol. 2013;113(4):1027–34. https://doi.org/10.1007/s00421-012-2506-6.
Article
PubMed
Google Scholar
Kempton MJ, Ettinger U, Foster R, Williams SC, Calvert GA, Hampshire A, et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapp. 2011;32(1):71–9. https://doi.org/10.1002/hbm.20999.
Article
PubMed
Google Scholar
Szinnai G, Schachinger H, Arnaud MJ, Linder L, Keller U. Effect of water deprivation on cognitive-motor performance in healthy men and women. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R275–80. https://doi.org/10.1152/ajpregu.00501.2004.
Article
PubMed
CAS
Google Scholar
Lindseth PD, Lindseth GN, Petros TV, Jensen WC, Caspers J. Effects of hydration on cognitive function of pilots. Mil Med. 2013;178(7):792–8. https://doi.org/10.7205/MILMED-D-13-00013.
Article
PubMed
Google Scholar
Petri NM, Dropulic N, Kardum G. Effects of voluntary fluid intake deprivation on mental and psychomotor performance. Croat Med J. 2006;47(6):855–61.
PubMed
PubMed Central
Google Scholar
Smith MF, Newell AJ, Baker MR. Effect of acute mild dehydration on cognitive-motor performance in golf. J Strength Cond Res. 2012;26(11):3075–80. https://doi.org/10.1519/JSC.0b013e318245bea7.
Article
PubMed
Google Scholar
Huttermann S, Memmert D. Does the inverted-U function disappear in expert athletes? An analysis of the attentional behavior under physical exercise of athletes and non-athletes. Physiol Behav. 2014;131:87–92. https://doi.org/10.1016/j.physbeh.2014.04.020.
Article
PubMed
CAS
Google Scholar
Lee JK, Koh AC, Koh SX, Liu GJ, Nio AQ, Fan PW. Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur J Appl Physiol. 2014;114(2):375–84. https://doi.org/10.1007/s00421-013-2774-9.
Article
PubMed
Google Scholar
Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003;112(3):297–324.
Article
Google Scholar
Tomporowski PD, Ellis NR. Effects of exercise on cognitive-processes - a review. Psychol Bull. 1986;99(3):338–46. https://doi.org/10.1037//0033-2909.99.3.338.
Article
Google Scholar
Marriott J, Reilly T, Miles A. The effect of physiological stress on cognitive performance in a simulation of soccer. Science and Football. 1993;2:261–4.
Google Scholar
Tsukamoto H, Suga T, Takenaka S, Tanaka D, Takeuchi T, Hamaoka T, et al. Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiol Behav. 2016;160:26–34. https://doi.org/10.1016/j.physbeh.2016.03.029.
Article
PubMed
CAS
Google Scholar
Gaoua N, Grantham J, Racinais S, El Massioui F. Sensory displeasure reduces complex cognitive performance in the heat. J Environ Psychol. 2012;32(2):158–63. https://doi.org/10.1016/j.jenvp.2012.01.002.
Article
Google Scholar
Sunderland C, Taylor E, Pearce E, Spice C. Activity profile and physical demands of male field hockey umpires in international matches. European Journal of Sport Science. 2011;11(6):411–7. https://doi.org/10.1080/17461391.2010.536576.
Article
Google Scholar
Coull NA, Watkins SL, Aldous JW, Warren LK, Chrismas BC, Dascombe B, et al. Effect of tyrosine ingestion on cognitive and physical performance utilising an intermittent soccer performance test (iSPT) in a warm environment. Eur J Appl Physiol. 2015;115(2):373–86. https://doi.org/10.1007/s00421-014-3022-7.
Article
PubMed
CAS
Google Scholar
Lakomy HKA. The use of a non-motorized treadmill for analysing sprint performance. Ergonomics. 1987;30(4):627–37.
Article
Google Scholar
Thatcher R, Batterham AM. Development and validation of a sport-specific exercise protocol for elite youth soccer players. J Sports Med Phys Fitness. 2004;44(1):15–22.
PubMed
CAS
Google Scholar
Drust B, Atkinson G, Reilly T. Future perspectives in the evaluation of the physiological demands of soccer. Sports Med. 2007;37(9):783–805. doi:3793 [pii]
Article
PubMed
Google Scholar