McSwiney FT, Wardrop B, Hyde PN, Lafountain RA, Volek JS, Doyle L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism. 2018;81:25–34. https://doi.org/10.1016/j.metabol.2017.10.010.
Article
CAS
PubMed
Google Scholar
Jenner SL, et al. Dietary intake of professional Australian football athletes surrounding body composition assessment. J Int Soc Sports Nutr. 2018;15(1):1–8.
Article
Google Scholar
Stellingwerff T. Case study: body composition periodization in an olympic-level female middle-distance runner over a 9-year career. Int J Sport Nutr Exerc Metab. 2018;28(4):428–33. https://doi.org/10.1123/ijsnem.2017-0312.
Article
PubMed
Google Scholar
Devlin BL, et al. Dietary intake, body composition, and nutrition knowledge of Australian football and soccer players: implications for sports nutrition professionals in practice. Int J Sport Nutr. 2017;27(2):130–8.
CAS
Google Scholar
Witard OC, Garthe I, Phillips SM. Dietary protein for training adaptation and body composition manipulation in track and field athletes. Int J Sport Nutr. 2019;29(2):165–74.
CAS
Google Scholar
Miller T, et al. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: a randomized trial. Int J Sport Nutr. 2018;28(1):46–54.
CAS
Google Scholar
Andersson-Hall U, Pettersson S, Edin F, Pedersen A, Malmodin D, Madsen K. Metabolism and whole-body fat oxidation following postexercise carbohydrate or protein intake. Int J Sport Nutr Exerc Metab. 2018;28(1):37–45. https://doi.org/10.1123/ijsnem.2017-0129.
Article
CAS
PubMed
Google Scholar
Binia A, Vargas-Martínez C, Ancira-Moreno M, Gosoniu LM, Montoliu I, Gámez-Valdez E, et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. J Nutr Biochem. 2017;43:98–106. https://doi.org/10.1016/j.jnutbio.2017.02.002.
Article
CAS
PubMed
Google Scholar
Herbst E, et al. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J Physiol. 2014;592(6):1341–52. https://doi.org/10.1113/jphysiol.2013.267336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckley JD, Howe P. Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obes Rev. 2009;10(6):648–59. https://doi.org/10.1111/j.1467-789X.2009.00584.x.
Article
CAS
PubMed
Google Scholar
Logan SL, Spriet LL. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS One. 2015;10(12):e0144828. https://doi.org/10.1371/journal.pone.0144828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated AS probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects. J Funct Foods. 2017;34:408–21. https://doi.org/10.1016/j.jff.2017.05.007.
Article
CAS
Google Scholar
Brown TJ, et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;366:l4697.
Article
PubMed
PubMed Central
Google Scholar
NUTRITION, S. and C. TOXICITY, Advice on fish consumption: benefits & risks. Norwich: TSO (The Stationery Office); 2004.
Google Scholar
Rabar S, Harker M, O'Flynn N, Wierzbicki AS, On behalf of the Guideline Development Group. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. Bmj. 2014;349(jul17 12):g4356. https://doi.org/10.1136/bmj.g4356.
Article
CAS
PubMed
Google Scholar
Krebs JD, Browning LM, McLean NK, Rothwell JL, Mishra GD, Moore CS, et al. Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int J Obes. 2006;30(10):1535–44. https://doi.org/10.1038/sj.ijo.0803309.
Article
CAS
Google Scholar
Fearon K, von Meyenfeldt M, Moses AG, van Geenen R, Roy A, Gouma DJ, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut. 2003;52(10):1479–86. https://doi.org/10.1136/gut.52.10.1479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu R-m, et al. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacologica Sinica. 2014;35(10):1274–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zand H, Rhimipour A, Bakhshayesh M, Shafiee M, Nour Mohammadi I, Salimi S. Involvement of PPAR-γ and p53 in DHA-induced apoptosis in Reh cells. Mol Cell Biochem. 2007;304(1–2):71–7. https://doi.org/10.1007/s11010-007-9487-5.
Article
CAS
PubMed
Google Scholar
Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Kang JX, et al. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous omega-3 polyunsaturated fatty acids. J Neurosci. 2012;32(2):563–71. https://doi.org/10.1523/JNEUROSCI.3371-11.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halcox JP. Cardiovascular risk and lipid management beyond statin therapy: the potential role of omega–3 polyunsaturated fatty acid ethyl esters. Clin Lipidol. 2013;8(3):329–44. https://doi.org/10.2217/clp.13.16.
Article
CAS
Google Scholar
Virtanen JK. Dietary polyunsaturated fat intake in coronary heart disease risk: Taylor & Francis; 2015.
Book
Google Scholar
Rizos EC, Ntzani EE, Bika E, Kostapanos MS, Elisaf MS. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. Jama. 2012;308(10):1024–33. https://doi.org/10.1001/2012.jama.11374.
Article
CAS
PubMed
Google Scholar
Harris WS, Mozaffarian D, Lefevre M, Toner CD, Colombo J, Cunnane SC, et al. Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids. J Nutr. 2009;139(4):804S–19S. https://doi.org/10.3945/jn.108.101329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muskiet FA, et al. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr. 2004;134(1):183–6. https://doi.org/10.1093/jn/134.1.183.
Article
CAS
PubMed
Google Scholar
Baum SJ, Kris-Etherton PM, Willett WC, Lichtenstein AH, Rudel LL, Maki KC, et al. Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol. 2012;6(3):216–34. https://doi.org/10.1016/j.jacl.2012.04.077.
Article
PubMed
Google Scholar
Rhodes D, et al. 2011–2012 What we eat in america, NHANES tables 1–40: Worldwide Web Site: Food Surveys Research Group 2014; 2014.
Google Scholar
Nisoli E, Carruba MO, Tonello C, Macor C, Federspil G, Vettor R. Induction of fatty acid translocase/CD36, peroxisome proliferator-activated receptor-gamma2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor-alpha gene expression in human subcutaneous fat by lipid infusion. Diabetes. 2000;49(3):319–24. https://doi.org/10.2337/diabetes.49.3.319.
Article
CAS
PubMed
Google Scholar
Banga A, Unal R, Tripathi P, Pokrovskaya I, Owens RJ, Kern PA, et al. Adiponectin translation is increased by the PPARγ agonists pioglitazone and ω-3 fatty acids. Am J Physiol Endocrinol Metab. 2009;296(3):E480–9. https://doi.org/10.1152/ajpendo.90892.2008.
Article
CAS
PubMed
Google Scholar
Tsai Y-S, Maeda N. PPARγ: a critical determinant of body fat distribution in humans and mice. Trends Cardiovasc Med. 2005;15(3):81–5. https://doi.org/10.1016/j.tcm.2005.04.002.
Article
CAS
PubMed
Google Scholar
Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812(8):1007–22. https://doi.org/10.1016/j.bbadis.2011.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siersbæk R, Nielsen R, Mandrup S. PPARγ in adipocyte differentiation and metabolism–novel insights from genome-wide studies. FEBS Lett. 2010;584(15):3242–9. https://doi.org/10.1016/j.febslet.2010.06.010.
Article
CAS
PubMed
Google Scholar
Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP, et al. Association between uncoupling protein polymorphisms (UCP2–UCP3) and energy metabolism/obesity in Pima Indians. Hum Mol Genet. 1998;7(9):1431–5. https://doi.org/10.1093/hmg/7.9.1431.
Article
CAS
PubMed
Google Scholar
Salopuro T, Pulkkinen L, Lindström J, Kolehmainen M, Tolppanen AM, Eriksson JG, et al. Variation in the UCP2 and UCP3genes associates with abdominal obesity and serum lipids: the Finnish diabetes prevention study. BMC Med Genet. 2009;10(1):94. https://doi.org/10.1186/1471-2350-10-94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhamrait SS, et al. Cardiovascular risk in healthy men and markers of oxidative stress in diabetic men are associated with common variation in the gene for uncoupling protein 2. Eur Heart J Acute Cardiovasc Care. 2004;25(6):468–75.
CAS
Google Scholar
de Oliveira BAP, de Souza Pinhel MA, Nicoletti CF, de Oliveira CC, Quinhoneiro DCG, Noronha NY, et al. UCP2 and PLIN1 expression affects the resting metabolic rate and weight loss on obese patients. Obes Surg. 2017;27(2):343–8. https://doi.org/10.1007/s11695-016-2275-0.
Article
PubMed
Google Scholar
Perez R, Cañón J, Dunner S. Genes associated with long-chain omega-3 fatty acids in bovine skeletal muscle. J Appl Genet. 2010;51(4):479–87. https://doi.org/10.1007/BF03208877.
Article
CAS
PubMed
Google Scholar
Marta F, et al. Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. J Physiol Pharmacol. 2020;76(2):251–67.
Google Scholar
Rad EY, et al. Omega-3 fatty acids and vitamin E supplementation can affect gene expressions of SIRT1, FOXO1 and UCP-2 in coronary artery disease patients. Obes Med. 2019;15:100116.
Article
Google Scholar
Mohammadi M, Abbasalipourkabir R, Ziamajidi N. Fish oil and chicoric acid combination protects better against palmitate-induced lipid accumulation via regulating AMPK-mediated SREBP-1/FAS and PPARα/UCP2 pathways. Arch Physiol Biochem. 2020:1–9. https://doi.org/10.1080/13813455.2020.1789881.
Wang P, Li B, Cai G, Huang M, Jiang L, Pu J, et al. Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2. J Cardiovasc Pharmacol. 2014;64(6):497–506. https://doi.org/10.1097/FJC.0000000000000143.
Article
CAS
PubMed
Google Scholar
Villarroya F, Iglesias R, Giralt M. PPARs in the control of uncoupling proteins gene expression. PPAR Res. 2007;2007:1–12. https://doi.org/10.1155/2007/74364.
Article
Google Scholar
Parker HM, Cohn JS, O'Connor HT, Garg ML, Caterson ID, George J, Johnson NA. Effect of fish oil supplementation on hepatic and visceral fat in overweight men: a randomized controlled trial. Nutrients. 2019;11(2):475.
Taghadomi Masoumi Z, Eshraghian MR, Hedayati M, Pishva H. Association between uncoupling protein 2, adiponectin and resting energy expenditure in obese women with normal and low resting energy expenditure. Gynecol Endocrinol. 2018;34(2):166–70. https://doi.org/10.1080/09513590.2017.1379492.
Article
CAS
PubMed
Google Scholar
Zarebska A, Jastrzebski Z, Cieszczyk P, Leonska-Duniec A, Kotarska K, Kaczmarczyk M, et al. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene modifies the association of physical activity and body mass changes in polish women. PPAR Res. 2014;2014:1–7. https://doi.org/10.1155/2014/373782.
Article
Google Scholar
MF, AZ. The function of uncoupling proteins in various tissues. Majallahi Danishkadahi Pizishkii Isfahan. 2013;31(241):903–22.
Google Scholar
Li Q, Yu Q, Lin L, Zhang H, Peng M, Jing C, et al. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake. Neuropeptides. 2018;69:39–45. https://doi.org/10.1016/j.npep.2018.04.002.
Article
CAS
PubMed
Google Scholar
Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature. 2008;454(7206):846–51. https://doi.org/10.1038/nature07181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damsbo Svendsen S, Rønsholdt MD, Lauritzen L. Fish oil-supplementation increases appetite in healthy adults. A randomized controlled cross-over trial. Appetite. 2013;66:62–6. https://doi.org/10.1016/j.appet.2013.02.019.
Article
PubMed
Google Scholar
Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes. 2000;24(1):38–48. https://doi.org/10.1038/sj.ijo.0801083.
Article
CAS
Google Scholar
Péter S, Navis G, de Borst MH, von Schacky C, van Orten-Luiten ACB, Zhernakova A, et al. Public health relevance of drug–nutrition interactions. Eur J Nutr. 2017;56(2):23–36. https://doi.org/10.1007/s00394-017-1510-3.
Article
PubMed
PubMed Central
Google Scholar
Agostoni C, Bresson JL, Tait SF, Flynn A, Golly I, Korhonen H, Lagiou P, et al. Scientific opinion on the tolerable Upper Intake Level of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA): EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2012.p. 1–48.
Huang W, Fan Q, Zhang X. Cod liver oil: a potential protective supplement for human glaucoma. Int J Ophthalmol. 2011;4(6):648–51. https://doi.org/10.3980/j.issn.2222-3959.2011.06.15.
Article
PubMed
PubMed Central
Google Scholar
Armstrong T, Bull F. Development of the world health organization global physical activity questionnaire (GPAQ). J Public Health. 2006;14(2):66–70. https://doi.org/10.1007/s10389-006-0024-x.
Article
Google Scholar
BashiriMoosavi F, et al. Level of physical activity among girl high school students in Tarom county and relevant factors. Iran J Health Educ Health Promotion. 2015;3(2):133–40.
Google Scholar
Nieman DC, Austin MD, Benezra L, Pearce S, McInnis T, Unick J, et al. Validation of Cosmed’s FitMate™ in measuring oxygen consumption and estimating resting metabolic rate. Res Sports Med. 2006;14(2):89–96. https://doi.org/10.1080/15438620600651512.
Article
PubMed
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. https://doi.org/10.1093/nar/30.9.e36.
Article
PubMed
PubMed Central
Google Scholar
Mejía Barradas CM, et al. The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents. Endocrine. 2014;45(1):98–105. https://doi.org/10.1007/s12020-013-9941-y.
Article
CAS
PubMed
Google Scholar
Tian C, Fan C, Liu X, Xu F, Qi K. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation. Clin Nutr. 2011;30(5):659–67. https://doi.org/10.1016/j.clnu.2011.03.002.
Article
CAS
PubMed
Google Scholar
Chambrier C, Bastard JP, Rieusset J, Chevillotte E, Bonnefont-Rousselot D, Therond P, et al. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ. Obes Res. 2002;10(6):518–25. https://doi.org/10.1038/oby.2002.70.
Article
CAS
PubMed
Google Scholar
Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC, et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-γ–dependent mechanism. Kidney Int. 2005;67(3):867–74. https://doi.org/10.1111/j.1523-1755.2005.00151.x.
Article
CAS
PubMed
Google Scholar
Mansoori A, Sotoudeh G, Djalali M, Eshraghian MR, Keramatipour M, Nasli-Esfahani E, et al. Effect of DHA-rich fish oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Clin Lipidol. 2015;9(6):770–7. https://doi.org/10.1016/j.jacl.2015.08.007.
Article
PubMed
Google Scholar
Jamilian M, Tabassi Z, Reiner Ž, Panahandeh I, Naderi F, Aghadavod E, et al. The effects of n-3 fatty acids from flaxseed oil on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2020;123(7):792–9. https://doi.org/10.1017/S0007114519003416.
Article
CAS
PubMed
Google Scholar
Martínez-Fernández L, et al. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostag Oth Lipid M. 2015;121:24–41.
Google Scholar
Mansoori A, et al. Docosahexaenoic acid-rich fish oil supplementation improves body composition without influence of the PPARγ Pro12Ala polymorphism in patients with yype 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Lifestyle Genom. 2015;8(4–6):195–204.
CAS
Google Scholar
MacLaren LA, Guzeloglu A, Michel F, Thatcher WW. Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production. Domest Anim. 2006;30(3):155–69. https://doi.org/10.1016/j.domaniend.2005.07.003.
Article
CAS
Google Scholar
Anderson EJ, Thayne KA, Harris M, Shaikh SR, Darden TM, Lark DS, Williams JM, Chitwood R, Kypson AP, Rodriguez E. "Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial myocardium via PPARγ activation?." 2014. p. 1156–63.
Hsu H, Chen C, Chen M. N-3 polyunsaturated fatty acids decrease levels of doxorubicin-induced reactive oxygen species in cardiomyocytes--involvement of uncoupling protein UCP2. J Biomed Sci. 2014;21(1):1–11.
Article
CAS
Google Scholar
Casanova E, Baselga-Escudero L, Ribas-Latre A, Arola-Arnal A, Bladé C, Arola L, et al. Epigallocatechin gallate counteracts oxidative stress in docosahexaenoxic acid-treated myocytes. Biochim Biophys Acta. 2014;1837(6):783–91. https://doi.org/10.1016/j.bbabio.2014.01.014.
Article
CAS
PubMed
Google Scholar
Wu Y, Zhang C, Dong Y, Wang S, Song P, Viollet B, et al. Activation of the AMP-activated protein kinase by eicosapentaenoic acid (EPA, 20: 5 n-3) improves endothelial function in vivo. PLoS One. 2012;7(4):e35508. https://doi.org/10.1371/journal.pone.0035508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armstrong MB, Towle HC. Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARα-mediated pathway. Am J Physiol Endocrinol Metab. 2001;281(6):E1197–204. https://doi.org/10.1152/ajpendo.2001.281.6.E1197.
Article
CAS
PubMed
Google Scholar
Hun CS, Hasegawa K, Kawabata T, Kato M, Shimokawa T, Kagawa Y. Increased uncoupling protein2 mRNA in white adipose tissue, and decrease in leptin, visceral fat, blood glucose, and cholesterol in KK-ay mice fed with eicosapentaenoic and docosahexaenoic acids in addition to linolenic acid. Biochem Biophys Res Commun. 1999;259(1):85–90. https://doi.org/10.1006/bbrc.1999.0733.
Article
CAS
PubMed
Google Scholar
Tsuboyama Kasaoka N, et al. Up-regulation of liver uncoupling protein-2 mRNA by either fish oil feeding or fibrate administration in mice. Biochem Biophys Res Commun. 1999;257(3):879–85. https://doi.org/10.1006/bbrc.1999.0555.
Article
CAS
PubMed
Google Scholar
Addison O, Marcus RL, LaStayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014;2014:1–11. https://doi.org/10.1155/2014/309570.
Article
CAS
Google Scholar
Capó X, Martorell M, Sureda A, Llompart I, Tur JA, Pons A. Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr. 2015;54(1):35–49. https://doi.org/10.1007/s00394-014-0683-2.
Article
CAS
PubMed
Google Scholar
Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A. Training enhances immune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation. Oxid Med Cell Longev. 2016. p. 8950384.
MFD, et al. The Effect of docosahexaenoic acid on t 10, c 12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, Adipose, and Muscle. Metab Syndr Relat Disord. 2013;11(1):63–70.
Article
Google Scholar
Arai T, Kim HJ, Chiba H, Matsumoto A. Interaction of fenofibrate and fish oil in relation to lipid metabolism in mice. J Atheroscler Thromb. 2009;16(3):283–91. https://doi.org/10.5551/jat.E463.
Article
CAS
PubMed
Google Scholar
Kato T, Shimano H, Yamamoto T, Ishikawa M, Kumadaki S, Matsuzaka T, et al. Palmitate impairs and eicosapentaenoate restores insulin secretion through regulation of SREBP-1c in pancreatic islets. Diabetes. 2008;57(9):2382–92. https://doi.org/10.2337/db06-1806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira M, Chicco A, Lombardo Y. Dietary fish oil normalized glucose-stimulated insulin secretion in isolated pancreatic islets of dyslipemic rats through mechanisms involving glucose phosphorylation, peroxisome proliferator-activated receptor γ and uncoupling protein 2. Prostaglandins Leukot Essent. 2013;89(1):31–8. https://doi.org/10.1016/j.plefa.2013.04.006.
Article
CAS
Google Scholar
Barazzoni R, Bosutti A, Stebel M, Cattin MR, Roder E, Visintin L, et al. Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab. 2005;288(1):E228–35. https://doi.org/10.1152/ajpendo.00115.2004.
Article
CAS
PubMed
Google Scholar
Huang C, et al. Influence of dietary alpha-lipoic acid and lipid level on the growth performance, food intake and gene expression of peripheral appetite regulating factors in juvenile grass carp (Ctenopharyngodon idellus). Aquac Res. 2019;505:412–22. https://doi.org/10.1016/j.aquaculture.2019.02.054.
Article
CAS
Google Scholar
Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids and the brain: from infancy to aging. Neurobiol. Aging. 2005;26 Suppl 1:98–102.
Article
CAS
PubMed
Google Scholar
Parra D, Ramel A, Bandarra N, Kiely M, Martínez JA, Thorsdottir I. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51(3):676–80. https://doi.org/10.1016/j.appet.2008.06.003.
Article
CAS
PubMed
Google Scholar
Gerling CJ, Whitfield J, Mukai K, Spriet LL. Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Appl Physiol Nutr Metab. 2014;39(9):1083–91. https://doi.org/10.1139/apnm-2014-0049.
Article
CAS
PubMed
Google Scholar
Bortolotti M, Tappy L, Schneiter P. Fish oil supplementation does not alter energy efficiency in healthy males. Clin Nutr. 2007;26(2):225–30. https://doi.org/10.1016/j.clnu.2006.11.006.
Article
CAS
PubMed
Google Scholar
Noreen EE, et al. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7(1):1–7.
Article
Google Scholar
Jannas-Vela S, Roke K, Boville S, Mutch DM, Spriet LL. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: a randomized controlled trial. PLoS One. 2017;12(2):e0172576. https://doi.org/10.1371/journal.pone.0172576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulbert AJ. Membrane fatty acids as pacemakers of animal metabolism. Lipids. 2007;42(9):811–9. https://doi.org/10.1007/s11745-007-3058-0.
Article
CAS
PubMed
Google Scholar
Nagahuedi S, Popesku JT, Trudeau VL, Weber JM. Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression. J Exp Biol. 2009;212(8):1106–14. https://doi.org/10.1242/jeb.027888.
Article
CAS
PubMed
Google Scholar