Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–46. https://doi.org/10.1016/S0140-6736(19)31138-9.
Article
PubMed
Google Scholar
Schaap LA, van Schoor NM, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J Gerontol A Biol Sci Med Sci. 2018;73(9):1199–204. https://doi.org/10.1093/gerona/glx245.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on defnition and diagnosis. Age Ageing. 2018;48:16–31. https://doi.org/10.1093/ageing/afy169.
Article
PubMed Central
Google Scholar
Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36. https://doi.org/10.1002/jcsm.12048.
Article
PubMed
Google Scholar
Beaudart C, Biver E, Reginster JY, Rizzoli R, Rolland Y, Bautmans I, et al. Validation of the SarQoL®, a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle. 2017;8(2):238–44. https://doi.org/10.1002/jcsm.12149.
Article
PubMed
Google Scholar
JafariNasabian P, Inglis JE, Reilly W, Kelly OJ, Ilich JZ. Aging human body: changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol. 2017;234(1):R37–51. https://doi.org/10.1530/JOE-16-0603.
Article
CAS
PubMed
Google Scholar
St-Onge MP, Gallagher D. Body composition changes with aging: The cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition. 2010;26(2):152–5. https://doi.org/10.1016/j.nut.2009.07.004.
Article
CAS
PubMed
Google Scholar
Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–137:50–8. https://doi.org/10.1016/j.mad.2013.11.009.
Article
PubMed
Google Scholar
Serra-Prat M, Lorenzo I, Palomera E, Ramírez S, Yébenes JC. Total body water and intracellular water relationships with muscle strength, frailty and functional performance in an elderly population. J Nutr Health Aging. 2019;23(1):96–101. https://doi.org/10.1007/s12603-018-1129-y.
Article
CAS
PubMed
Google Scholar
Heymsfield SB, Ebbeling CB, Zheng J, Pietrobelli A, Strauss BJ, Silva AM, et al. Multi-component molecular-level body composition reference methods: evolving concepts and future directions. Obes Rev. 2015;16(4):282–94. https://doi.org/10.1111/obr.12261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toomey CM, Cremona A, Hughes K, Norton C, Jakeman P. A review of body composition measurement in the assessment of health. Top Clin Nutr. 2015;30(1):16–32. https://doi.org/10.1097/TIN.0000000000000017.
Article
Google Scholar
Kaminsky LA, Ozemek C, Williams KL, Byun W. Precision of total and regional body fat estimates from dual-energy X-ray absorptiometer measurements. J Nutr Health Aging. 2014;18(6):591–4. https://doi.org/10.1007/s12603-014-0012-8.
Article
CAS
PubMed
Google Scholar
Schoeller DA, van Santen E, Peterson DW, Dietz W, Jaspan J, Klein PD. Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr. 1980;33(12):2686–93. https://doi.org/10.1093/ajcn/33.12.2686.
Article
CAS
PubMed
Google Scholar
Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008;9(7):26. https://doi.org/10.1186/1475-2891-7-26.
Article
Google Scholar
Ellis KJ, Wong WW. Human hydrometry: comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J Appl Physiol. 1998;85(3):1056–62. https://doi.org/10.1152/jappl.1998.85.3.1056.
Article
CAS
PubMed
Google Scholar
Jackson AA, Johnson M, Durkin K, Wootton S. Body composition assessment in nutrition research: value of BIA technology. Eur J Clin Nutr. 2013;67(Suppl 1):S71–8. https://doi.org/10.1038/ejcn.2012.167.
Article
PubMed
Google Scholar
Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am J Clin Nutr. 1996;64(3 Suppl):524S–32S. https://doi.org/10.1093/ajcn/64.3.524S.
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Composition of the ESPEN Working Group, et al. Bioelectrical impedance analysis–part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43. https://doi.org/10.1016/j.clnu.2004.06.004.
Article
PubMed
Google Scholar
Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46(2):534–9. https://doi.org/10.1038/ki.1994.305.
Article
CAS
PubMed
Google Scholar
Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854–61. https://doi.org/10.1016/j.clnu.2012.05.008.
Article
PubMed
Google Scholar
Buffa R, Mereu E, Comandini O, Ibanez ME, Marini E. Bioelectrical impedance vector analysis (BIVA) for the assessment of two-compartment body composition. Eur J Clin Nutr. 2014;68(11):1234–40. https://doi.org/10.1038/ejcn.2014.170.
Article
CAS
PubMed
Google Scholar
Buffa R, Saragat B, Cabras S, Rinaldi AC, Marini E. Accuracy of specific BIVA for the assessment of body composition in the United States population. PLoS ONE. 2013;8(3):e58533. https://doi.org/10.1371/journal.pone.0058533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stagi S, Irurtia A, Rosales Rafel J, Cabras S, Buffa R, Carrasco-Marginet M, Castizo-Olier J, Marini E. Segmental body composition estimated by specific BIVA and dual-energy X-ray absorptiometry. Clin Nutr. 2021;40(4):1621–7. https://doi.org/10.1016/j.clnu.2021.02.043.
Article
CAS
PubMed
Google Scholar
Bolfarine H, Bussab WO. Elementos de amostragem. São Paulo: Edgard Blücher; 2005.
Google Scholar
Visser M, Pahor M, Tylavsky F, Kritchevsky SB, Cauley JA, Newman AB, et al. One- and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J Appl Physiol. 2003;94(6):2368–74. https://doi.org/10.1152/japplphysiol.00124.2002.
Article
PubMed
Google Scholar
Icaza MC, Albala C, Projeto SABE. Minimental state examination (MMSE) del estudio de dementia en Chile: análisis estatístico. Brasília: OPAS; 1999. p. 1–18.
Google Scholar
Lohman T, Roche A, Martorell R. Anthropometric standardization reference manual. Champaign: Human Kinetics; 1988.
Google Scholar
Venturini ACR, Silva AM, Abdalla PP, Dos Santos AP, Borges FG, Alves TC, et al. Estimating resting energy expenditure from dual-energy X-ray absorptiometry: a cross-sectional study in healthy young adults. Am J Hum Biol. 2021;33(2):e23466. https://doi.org/10.1002/ajhb.23466.
Article
PubMed
Google Scholar
Abdalla PP, Silva AM, Venturini ACR, Santos APD, Carvalho ADS, Siqueira V, et al. Cut-off points of appendicular lean soft tissue for identifying sarcopenia in older adults in Brazil: a cross-sectional study. Nutr Hosp. 2020;37(2):306–12. https://doi.org/10.20960/nh.02951 (English).
Article
PubMed
Google Scholar
Lukaski HC, Piccoli A. Bioelectrical impedance vector analysis for assessment of hydration in physiological states and clinical conditions. In: Preedy VR, editor. Handbook of anthropometry. New York: Springer; 2012. p. 287–305.
Chapter
Google Scholar
Piccoli A, Nigrelli S, Caberlotto A, Bottazzo S, Rossi B, Pillon L, et al. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am J Clin Nutr. 1995;61(2):269–70. https://doi.org/10.1093/ajcn/61.2.269.
Article
CAS
PubMed
Google Scholar
Stagi S, Ibáñez-Zamacona ME, Jelenkovic A, Marini E, Rebato E. Association between self-perceived body image and body composition between the sexes and different age classes. Nutrition. 2021;82:111030. https://doi.org/10.1016/j.nut.2020.111030.
Article
PubMed
Google Scholar
Saragat B, Buffa R, Mereu E, De Rui M, Coin A, Sergi G, et al. Specific bioelectrical impedance vector reference values for assessing body composition in the Italian elderly. Exp Gerontol. 2014;50:52–6. https://doi.org/10.1016/j.exger.2013.11.016.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, European Working Group on Sarcopenia in Older People, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23. https://doi.org/10.1093/ageing/afq034.
Article
PubMed
PubMed Central
Google Scholar
Alexandre Tda S, Duarte YA, Santos JL, Wong R, Lebrão ML. Prevalence and associated factors of sarcopenia among elderly in Brazil: findings from the SABE study. J Nutr Health Aging. 2014;18(3):284–90. https://doi.org/10.1007/s12603-013-0413-0.
Article
PubMed
Google Scholar
Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;14(4):127. https://doi.org/10.1186/1756-0500-4-127.
Article
Google Scholar
Lourenço RA, Pérez-Zepeda M, Gutiérrez-Robledo L, García-García FJ, Rodríguez Mañas L. Performance of the European Working Group on Sarcopenia in Older People algorithm in screening older adults for muscle mass assessment. Age Ageing. 2015;44(2):334–8. https://doi.org/10.1093/ageing/afu192.
Article
PubMed
Google Scholar
Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851–60. https://doi.org/10.1152/japplphysiol.00246.2003.
Article
PubMed
Google Scholar
Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63. https://doi.org/10.1093/oxfordjournals.aje.a009520.
Article
CAS
PubMed
Google Scholar
Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403–9. https://doi.org/10.1016/j.jamda.2011.04.014.
Article
PubMed
PubMed Central
Google Scholar
Bronhara B, Piccoli A, Pereira JC. Fuzzy linguistic model for bioelectrical impedance vector analysis. Clin Nutr. 2012;31(5):710–6. https://doi.org/10.1016/j.clnu.2012.02.014.
Article
PubMed
Google Scholar
Piccoli A. Estimation of fluid volumes in hemodialysis patients: comparing bioimpedance with isotopic and dilution methods. Kidney Int. 2014;85(4):738–41. https://doi.org/10.1038/ki.2013.434.
Article
CAS
PubMed
Google Scholar
Stark G. Functional consequences of oxidative membrane damage. J Membr Biol. 2005;205(1):1–16. https://doi.org/10.1007/s00232-005-0753-8.
Article
CAS
PubMed
Google Scholar
Norman K, Pirlich M, Sorensen J, Christensen P, Kemps M, Schütz T, et al. Bioimpedance vector analysis as a measure of muscle function. Clin Nutr. 2009;28(1):78–82. https://doi.org/10.1016/j.clnu.2008.11.001.
Article
PubMed
Google Scholar
Marini E, Sergi G, Succa V, Saragat B, Sarti S, Coin A, et al. Efficacy of specific bioelectrical impedance vector analysis (BIVA) for assessing body composition in the elderly. J Nutr Health Aging. 2013;17(6):515–21. https://doi.org/10.1007/s12603-012-0411-7.
Article
CAS
PubMed
Google Scholar
Marini E, Campa F, Buffa R, Stagi S, Matias CN, Toselli S, et al. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin Nutr. 2020;39(2):447–54. https://doi.org/10.1016/j.clnu.2019.02.016.
Article
PubMed
Google Scholar
Marini E, Buffa R, Saragat B, Coin A, Toffanello ED, Berton L, et al. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin Interv Aging. 2012;7:585–91. https://doi.org/10.2147/CIA.S38488.
Article
PubMed
PubMed Central
Google Scholar
Reljic D, Zarafat D, Jensen B, Herrmann HJ, Neurath MF, Konturek PC, et al. Phase angle and vector analysis from multifrequency segmental bioelectrical impedance analysis: new reference data for older adults. J Physiol Pharmacol. 2020;71(4):1–9. https://doi.org/10.26402/jpp.2020.4.04.
Article
Google Scholar
Ibrahim K, May C, Patel HP, Baxter M, Sayer AA, Roberts H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Stud. 2016;6(2):27. https://doi.org/10.1186/s40814-016-0067-x.
Article
Google Scholar
Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73. https://doi.org/10.1016/S0140-6736(14)62000-6.
Article
PubMed
Google Scholar
Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62. https://doi.org/10.1007/BF00235103.
Article
CAS
PubMed
Google Scholar
Clark BC. Neuromuscular changes with aging and sarcopenia. J Frailty Aging. 2019;8(1):7–9. https://doi.org/10.14283/jfa.2018.35.
Article
CAS
PubMed
Google Scholar
Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord. 2017;16(16):21. https://doi.org/10.1186/s40200-017-0302-x.
Article
PubMed
PubMed Central
Google Scholar
Toss F, Wiklund P, Nordström P, Nordström A. Body composition and mortality risk in later life. Age Ageing. 2012;41(5):677–81. https://doi.org/10.1093/ageing/afs087.
Article
PubMed
Google Scholar
Santanasto AJ, Goodpaster BH, Kritchevsky SB, Miljkovic I, Satterfield S, Schwartz AV, et al. Body composition remodeling and mortality: the health aging and body composition study. J Gerontol A Biol Sci Med Sci. 2017;72(4):513–9. https://doi.org/10.1093/gerona/glw163.
Article
PubMed
Google Scholar
Beaudart C, Rizzoli R, Bruyère O, Reginster JY, Biver E. Sarcopenia: burden and challenges for public health. Arch Public Health. 2014;72(1):45. https://doi.org/10.1186/2049-3258-72-45.
Article
PubMed
PubMed Central
Google Scholar