Thomas E, Bellafiore M, Gentile A, Paoli A, Palma A, Bianco A. Cardiovascular responses to muscle stretching: a systematic review and meta-analysis. Int J Sports Med. 2021. https://doi.org/10.1055/a-1312-7131.
Article
PubMed
Google Scholar
Thomas E, Bellafiore M, Petrigna L, Paoli A, Palma A, Bianco A. Peripheral nerve responses to muscle stretching: a systematic review. J Sports Sci Med. 2021;20(2):258–67.
Article
PubMed
PubMed Central
Google Scholar
Witvrouw E, Mahieu N, Danneels L, McNair P. Stretching and injury prevention: an obscure relationship. Sports Med. 2004;34(7):443–9.
Article
PubMed
Google Scholar
Kim G, Kim H, Kim WK, Kim J. Effect of stretching-based rehabilitation on pain, flexibility and muscle strength in dancers with hamstring injury: a single-blind, prospective, randomized clinical trial. J Sports Med Phys Fitness. 2017. https://doi.org/10.23736/S0022-4707.17.07554-5.
Article
PubMed
Google Scholar
Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab. 2015;41(1):1–11. https://doi.org/10.1139/apnm-2015-0235.
Article
PubMed
Google Scholar
Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports. 1998;8(2):65–77.
Article
CAS
PubMed
Google Scholar
Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation? Phys Ther. 2010;90(3):438–49. https://doi.org/10.2522/ptj.20090012.
Article
PubMed
Google Scholar
Weerapong P, Hume PA, Kolt GS. Stretching: Mechanisms and benefits for sport performance and injury prevention. Phys Ther Rev. 2004;9(4):189–206. https://doi.org/10.1179/108331904225007078.
Article
Google Scholar
Freitas SR, Mendes B, Le Sant G, Andrade RJ, Nordez A, Milanovic Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scand J Med Sci Sports. 2017. https://doi.org/10.1111/sms.12957.
Article
PubMed
Google Scholar
Nakamura M, Yoshida R, Sato S, Yahata K, Murakami Y, Kasahara K, et al. Comparison between high- and low-intensity static stretching training program on active and passive properties of plantar flexors. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.796497.
Article
PubMed
PubMed Central
Google Scholar
Thomas E, Bianco A, Paoli A, Palma A. The relation between stretching typology and stretching duration: the effects on range of motion. Int J Sports Med. 2018;39(4):243–54. https://doi.org/10.1055/s-0044-101146.
Article
PubMed
Google Scholar
Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local acute passive stretching effects on range of motion in healthy adults: a systematic review with meta-analysis. Sports Med. 2021;51(5):945–59. https://doi.org/10.1007/s40279-020-01422-5.
Article
PubMed
Google Scholar
Decoster LC, Cleland J, Altieri C. The effects of hamstring stretching on range of motion: a systematic literature review. J Orthop Sports Phys Ther. 2005;35(6):377–87. https://doi.org/10.2519/jospt.2005.35.6.377.
Article
PubMed
Google Scholar
Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc. 2012;44(1):154–64. https://doi.org/10.1249/MSS.0b013e318225cb27.
Article
PubMed
Google Scholar
Peck E, Chomko G, Gaz DV, Farrell AM. The effects of stretching on performance. Curr Sports Med Rep. 2014;13(3):179–85. https://doi.org/10.1249/JSR.0000000000000052.
Article
PubMed
Google Scholar
Kokkonen J, Nelson AG, Cornwell A. Acute muscle stretching inhibits maximal strength performance. Res Q Exerc Sport. 1998;69(4):411–5. https://doi.org/10.1080/02701367.1998.10607716.
Article
CAS
PubMed
Google Scholar
Brandenburg JP. Duration of stretch does not influence the degree of force loss following static stretching. J Sports Med Phys Fitness. 2006;46(4):526–34.
CAS
PubMed
Google Scholar
Winchester JB, Nelson AG, Kokkonen J. A single 30-s stretch is sufficient to inhibit maximal voluntary strength. Res Q Exerc Sport. 2009;80(2):257–61. https://doi.org/10.1080/02701367.2009.10599560.
Article
PubMed
Google Scholar
Trajano GS, Taylor JL, Orssatto LBR, McNulty CR, Blazevich AJ. Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. J Exp Biol. 2020. https://doi.org/10.1242/jeb.229922.
Article
PubMed
Google Scholar
Heckmann CJ, Gorassini MA, Bennett DJ. Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve. 2005;31(2):135–56. https://doi.org/10.1002/mus.20261.
Article
CAS
PubMed
Google Scholar
Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol (1985). 2014;117(12):1486–92. https://doi.org/10.1152/japplphysiol.00809.2014.
Article
PubMed
Google Scholar
Nelson AG, Kokkonen J, Arnall DA, Li L. Acute stretching increases postural stability in nonbalance trained individuals. J Strength Cond Res. 2012;26(11):3095–100. https://doi.org/10.1519/JSC.0b013e3182430185.
Article
PubMed
Google Scholar
Reddy RS, Alahmari KA. Effect of lower extremity stretching exercises on balance in geriatric population. Int J Health Sci (Qassim). 2016;10(3):389–95.
PubMed
Google Scholar
Chatzopoulos D, Galazoulas C, Patikas D, Kotzamanidis C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J Sports Sci Med. 2014;13(2):403–9.
PubMed
PubMed Central
Google Scholar
Behm DG, Bambury A, Cahill F, Power K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med Sci Sports Exerc. 2004;36(8):1397–402.
Article
PubMed
Google Scholar
Coratella G, Longo S, Rampichini S, Doria C, Borrelli M, Limonta E, et al. Passive stretching decreases muscle efficiency in balance tasks. PLoS ONE. 2021;16(9):e0256656. https://doi.org/10.1371/journal.pone.0256656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis NL, Brismee JM, James CR, Sizer PS, Sawyer SF. The effect of stretching on muscle responses and postural sway responses during computerized dynamic posturography in women and men. Arch Phys Med Rehabil. 2009;90(3):454–62. https://doi.org/10.1016/j.apmr.2008.09.570.
Article
PubMed
Google Scholar
Ajimsha MS, Al-Mudahka NR, Al-Madzhar JA. Effectiveness of myofascial release: systematic review of randomized controlled trials. J Bodyw Mov Ther. 2015;19(1):102–12. https://doi.org/10.1016/j.jbmt.2014.06.001.
Article
CAS
PubMed
Google Scholar
Beardsley C, Škarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19(4):747–58. https://doi.org/10.1016/j.jbmt.2015.08.007.
Article
PubMed
Google Scholar
Richman ED, Tyo BM, Nicks CR. Combined effects of self-myofascial release and dynamic stretching on range of motion, jump, sprint, and agility performance. J Strength Cond Res. 2019;33(7):1795–803.
Article
PubMed
Google Scholar
Kuruma H, Takei H, Nitta O, Furukawa Y, Shida N, Kamio H, et al. Effects of myofascial release and stretching technique on range of motion and reaction time. J Phys Ther Sci. 2013;25(2):169–71. https://doi.org/10.1589/jpts.25.169.
Article
Google Scholar
Skarabot J, Beardsley C, Stirn I. Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes. Int J Sports Phys Ther. 2015;10(2):203–12.
PubMed
PubMed Central
Google Scholar
Somers K, Aune D, Horten A, Kim J, Rogers J. Acute effects of gastrocnemius/soleus self-myofascial release versus dynamic stretching on closed-chain dorsiflexion. J Sport Rehabil. 2020;29(3):287–93. https://doi.org/10.1123/jsr.2018-0199.
Article
PubMed
Google Scholar
Barnes MF. The basic science of myofascial release: morphologic change in connective tissue. J Bodyw Mov Ther. 1997;1(4):231–8. https://doi.org/10.1016/S1360-8592(97)80051-4.
Article
Google Scholar
Tozzi P. Selected fascial aspects of osteopathic practice. J Bodyw Mov Ther. 2012;16(4):503–19. https://doi.org/10.1016/j.jbmt.2012.02.003.
Article
PubMed
Google Scholar
Schleip R. Fascial plasticity—a new neurobiological explanation: part 1. J Bodyw Mov Ther. 2003;7(1):11–9. https://doi.org/10.1016/S1360-8592(02)00067-0.
Article
Google Scholar
Itotani K, Kawahata K, Takashima W, Mita W, Minematsu H, Fujita H. Myofascial release of the hamstrings improves physical performance—a study of young adults. Healthcare. 2021;9(6):674.
Article
PubMed
PubMed Central
Google Scholar
Mauntel TC, Clark MA, Padua DA. Effectiveness of myofascial release therapies on physical performance measurements: a systematic review. Athl Train Sports Health Care. 2014;6(4):189–96. https://doi.org/10.3928/19425864-20140717-02.
Article
Google Scholar
Queiroz Dos Santos AN, Lemos T, Duarte Carvalho PH, Ferreira AS, Silva JG. Immediate effects of myofascial release maneuver applied in different lower limb muscle chains on postural sway. J Bodyw Mov Ther. 2021;25:151–6. https://doi.org/10.1016/j.jbmt.2020.10.024.
Article
PubMed
Google Scholar
Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med. 2019;40(13):813–7. https://doi.org/10.1055/a-1015-3123.
Article
CAS
PubMed
Google Scholar
Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755–62. https://doi.org/10.1079/phn2005898.
Article
PubMed
Google Scholar
Holzgreve F, Maurer-Grubinger C, Isaak J, Kokott P, Mörl-Kreitschmann M, Polte L, et al. The acute effect in performing common range of motion tests in healthy young adults: a prospective study. Sci Rep. 2020;10(1):21722. https://doi.org/10.1038/s41598-020-78846-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamersma DT, Hofste A, Rijken NHM, Roe of Rohé M, Oosterveld FGJ, Soer R. Reliability and validity of the Microgate Gyko for measuring range of motion of the low back. Musculoskelet Sci Pract. 2020;45:102091. https://doi.org/10.1016/j.msksp.2019.102091.
Article
PubMed
Google Scholar
Lee RYW, Munn J. Passive moment about the hip in straight leg raising. Clin Biomech. 2000;15(5):330–4. https://doi.org/10.1016/S0268-0033(99)00091-1.
Article
CAS
Google Scholar
Schwiertz G, Beurskens R, Muehlbauer T. Discriminative validity of the lower and upper quarter Y balance test performance: a comparison between healthy trained and untrained youth. BMC Sports Sci Med Rehabil. 2020;12(1):73. https://doi.org/10.1186/s13102-020-00220-w.
Article
PubMed
PubMed Central
Google Scholar
Zhou H, Yu P, Thirupathi A, Liang M. How to improve the standing long jump performance? A mininarrative review. Appl Bionics Biomech. 2020;2020:8829036. https://doi.org/10.1155/2020/8829036.
Article
PubMed
PubMed Central
Google Scholar
Behm DG, Alizadeh S, Drury B, Granacher U, Moran J. Non-local acute stretching effects on strength performance in healthy young adults. Eur J Appl Physiol. 2021;121(6):1517–29. https://doi.org/10.1007/s00421-021-04657-w.
Article
PubMed
Google Scholar
Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47(13):3325–33. https://doi.org/10.1016/j.jbiomech.2014.08.010.
Article
PubMed
PubMed Central
Google Scholar
Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol. 2010;20(6):1237–43. https://doi.org/10.1016/j.jelekin.2010.07.012.
Article
PubMed
Google Scholar
Schleip R. Fascial plasticity—a new neurobiological explanation part 2. J Bodyw Mov Ther. 2003;7(2):104–16. https://doi.org/10.1016/S1360-8592(02)00076-1.
Article
Google Scholar
Sharman MJ, Cresswell AG, Riek S. Proprioceptive neuromuscular facilitation stretching: mechanisms and clinical implications. Sports Med. 2006;36(11):929–39.
Article
PubMed
Google Scholar
Chalmers G. Re-examination of the possible role of Golgi tendon organ and muscle spindle reflexes in proprioceptive neuromuscular facilitation muscle stretching. Sports Biomech. 2004;3(1):159–83. https://doi.org/10.1080/14763140408522836.
Article
PubMed
Google Scholar
Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97. https://doi.org/10.1152/physrev.00048.2011.
Article
CAS
PubMed
Google Scholar
Macefield VG. Physiological characteristics of low-threshold mechanoreceptors in joints, muscle and skin in human subjects. Clin Exp Pharmacol Physiol. 2005;32(1–2):135–44. https://doi.org/10.1111/j.1440-1681.2005.04143.x.
Article
PubMed
Google Scholar
Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol. 2005;94(3):1699–706. https://doi.org/10.1152/jn.00191.2005.
Article
CAS
PubMed
Google Scholar
Collins DF. Proprioception: role of cutaneous receptors. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclopedia of neuroscience. Berlin: Springer; 2009. p. 3311–5.
Chapter
Google Scholar
Weerakkody NS, Mahns DA, Taylor JL, Gandevia SC. Impairment of human proprioception by high-frequency cutaneous vibration. J Physiol. 2007;581(3):971–80. https://doi.org/10.1113/jphysiol.2006.126854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruggieri RM, Coburn JW, Galpin AJ, Costa PB. Effects of a vibrating foam roller on ipsilateral and contralateral neuromuscular function and the hamstrings-to-quadriceps ratios. Int J Exerc Sci. 2021;14(1):304–23.
PubMed
PubMed Central
Google Scholar
Lim J-H, Park C-B. The immediate effects of foam roller with vibration on hamstring flexibility and jump performance in healthy adults. J Exerc Rehabil. 2019;15(1):50–4. https://doi.org/10.12965/jer.1836560.280.
Article
PubMed
PubMed Central
Google Scholar
García-Gutiérrez MT, Guillén-Rogel P, Cochrane DJ, Marín PJ. Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion. J Musculoskelet Neuronal Interact. 2018;18(2):262–7.
PubMed
PubMed Central
Google Scholar
Haddad M, Dridi A, Chtara M, Chaouachi A, del Wong P, Behm D, et al. Static stretching can impair explosive performance for at least 24 hours. J Strength Cond Res. 2014;28(1):140–6. https://doi.org/10.1519/JSC.0b013e3182964836.
Article
PubMed
Google Scholar
Melocchi I, Filipas L, Lovecchio N, De Nardi M, La Torre A, Codella R. Effects of different stretching methods on vertical jump ability and range of motion in young female artistic gymnastics athletes. J Sports Med Phys Fitness. 2021;61(4):527–33. https://doi.org/10.23736/s0022-4707.20.11386-0.
Article
PubMed
Google Scholar
Kirmizigil B, Ozcaldiran B, Colakoglu M. Effects of three different stretching techniques on vertical jumping performance. J Strength Cond Res. 2014;28(5):1263–71. https://doi.org/10.1519/JSC.0000000000000268.
Article
PubMed
Google Scholar
Cornwell A, Nelson A, Heise G, Sidaway B. Acute effects of passive muscle stretching on vertical jump performance. J Hum Mov Stud. 2001;40:307–24.
Google Scholar
Merino-Marban R, Fuentes V, Torres M, Mayorga-Vega D. Acute effect of a static- and dynamic-based stretching warm-up on standing long jump performance in primary schoolchildren. Biol Sport. 2021;38(3):333–9. https://doi.org/10.5114/biolsport.2021.99703.
Article
PubMed
Google Scholar
Robertson DG, Fleming D. Kinetics of standing broad and vertical jumping. Can J Sport Sci. 1987;12(1):19–23.
CAS
PubMed
Google Scholar
Kotsifaki A, Korakakis V, Graham-Smith P, Sideris V, Whiteley R. Vertical and horizontal hop performance: contributions of the hip, knee, and ankle. Sports Health. 2021;13(2):128–35. https://doi.org/10.1177/1941738120976363.
Article
PubMed
PubMed Central
Google Scholar
Behm DG, Kibele A. Effects of differing intensities of static stretching on jump performance. Eur J Appl Physiol. 2007;101(5):587–94. https://doi.org/10.1007/s00421-007-0533-5.
Article
PubMed
Google Scholar
Pandy MG, Zajac FE. Optimal muscular coordination strategies for jumping. J Biomech. 1991;24(1):1–10. https://doi.org/10.1016/0021-9290(91)90321-d.
Article
CAS
PubMed
Google Scholar
Phillips J, Diggin D, King DL, Sforzo GA. Effect of varying self-myofascial release duration on subsequent athletic performance. J Strength Cond Res. 2021;35(3):746–53. https://doi.org/10.1519/jsc.0000000000002751.
Article
PubMed
Google Scholar
Stroiney DA, Mokris RL, Hanna GR, Ranney JD. Examination of self-myofascial release vs. instrument-assisted soft-tissue mobilization techniques on vertical and horizontal power in recreational athletes. J Strength Cond Res. 2020;34(1):79–88. https://doi.org/10.1519/jsc.0000000000002628.
Article
PubMed
Google Scholar
Lopez-Samanes A, Del Coso J, Hernández-Davó JL, Moreno-Pérez D, Romero-Rodriguez D, Madruga-Parera M, et al. Acute effects of dynamic versus foam rolling warm-up strategies on physical performance in elite tennis players. Biol Sport. 2021;38(4):595–601. https://doi.org/10.5114/biolsport.2021.101604.
Article
PubMed
PubMed Central
Google Scholar
Queiroga MR, Lima LS, de Oliveira LEC, Fernandes DZ, Weber VMR, Ferreira SA, et al. Effect of myofascial release on lower limb range of motion, sit and reach and horizontal jump distance in male university students. J Bodyw Mov Ther. 2021;25:140–5. https://doi.org/10.1016/j.jbmt.2020.10.013.
Article
PubMed
Google Scholar
Costa PB, Graves BS, Whitehurst M, Jacobs PL. The acute effects of different durations of static stretching on dynamic balance performance. J Strength Cond Res. 2009;23(1):141–7. https://doi.org/10.1519/JSC.0b013e31818eb052.
Article
PubMed
Google Scholar
Hemmati L, Rojhani-Shirazi Z, Ebrahimi S. Effects of plantar flexor muscle static stretching alone and combined with massage on postural balance. Ann Rehabil Med. 2016;40(5):845–50. https://doi.org/10.5535/arm.2016.40.5.845.
Article
PubMed
PubMed Central
Google Scholar
Palmer TB, Agu-Udemba CC, Palmer BM. Acute effects of static stretching on passive stiffness and postural balance in healthy, elderly men. Phys Sportsmed. 2018;46(1):78–86. https://doi.org/10.1080/00913847.2018.1421396.
Article
PubMed
Google Scholar
Forbes PA, Chen A, Blouin J-S. Chapter 4—sensorimotor control of standing balance. In: Day BL, Lord SR, editors. Handbook of clinical neurology, vol. 159. Elsevier; 2018. p. 61–83.
Google Scholar
Onoda K, Huo M, Maruyama H. The immediate effect of neuromuscular joint facilitation (NJF) treatment on the standing balance in younger persons. J Phys Ther Sci. 2015;27(5):1481–3. https://doi.org/10.1589/jpts.27.1481.
Article
PubMed
PubMed Central
Google Scholar
Espí-López GV, López-Martínez S, Inglés M, Serra-Añó P, Aguilar-Rodríguez M. Effect of manual therapy versus proprioceptive neuromuscular facilitation in dynamic balance, mobility and flexibility in field hockey players. A randomized controlled trial. Phys Ther Sport. 2018;32:173–9. https://doi.org/10.1016/j.ptsp.2018.04.017.
Article
PubMed
Google Scholar
Gong W. Effects of dynamic exercise utilizing PNF patterns on the balance of healthy adults. J Phys Ther Sci. 2020;32(4):260–4. https://doi.org/10.1589/jpts.32.260.
Article
PubMed
PubMed Central
Google Scholar
Aslan H, Buddhadev HH, Suprak DN, San Juan JG. Acute effects of two hip flexor stretching techniques on knee joint position sense and balance. Int J Sports Phys Ther. 2018;13(5):846–59.
Article
PubMed
Google Scholar
Szafraniec R, Chromik K, Poborska A, Kawczyński A. Acute effects of contract-relax proprioceptive neuromuscular facilitation stretching of hip abductors and adductors on dynamic balance. PeerJ. 2018;6:e6108. https://doi.org/10.7717/peerj.6108.
Article
PubMed
PubMed Central
Google Scholar
Werfelli H, Hammami R, Selmi MA, Selmi W, Gabrilo G, Clark CCT, et al. Acute effects of different plyometric and strength exercises on balance performance in youth weightlifters. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.716981.
Article
PubMed
PubMed Central
Google Scholar
Lim KI, Nam HC, Jung KS. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques. J Phys Ther Sci. 2014;26(2):209–13. https://doi.org/10.1589/jpts.26.209.
Article
PubMed
PubMed Central
Google Scholar
Freire Ribeiro DL, Medeiros FVA, Marinho EBA, Ferreira Júnior JB, Bottaro MF, Carmo JC. Effects of myofascial release of the ankle plantar flexors on static postural balance of young men: a randomized clinical trial. J Bodyw Mov Ther. 2021;28:121–5. https://doi.org/10.1016/j.jbmt.2021.07.034.
Article
PubMed
Google Scholar