Skip to main content

Associations between cardiovascular risk factors, disease activity and cardiorespiratory fitness in patients with inflammatory joint disease: a cross-sectional analysis



Inflammatory joint diseases (IJD) are accompanied by an increased risk of cardiovascular disease (CVD). Cardiorespiratory fitness (CRF) is a modifiable CVD risk factor and low levels of CRF associate with an elevated CVD risk. This study aimed to investigate the associations between CVD risk factors, disease activity and CRF in patients with IJD and to explore differences between patients with normal versus low levels of CRF.


CRF was measured as peak oxygen uptake (VO2peak) with a cardiopulmonary exercise test. Participants were also evaluated for: Body composition, blood pressure, blood lipids, inflammatory markers and disease activity. Patient-reported use of cigarettes/snuff, medication, disease duration, pain, fatigue, CVD history, habitual physical activity and exercise beliefs and self-efficacy were collected by questionnaire. Cross-sectional associations between CVD risk factors, disease-related factors and CRF were analyzed by multiple linear regression. CRF was categorized to normal CRF (VO2peak ≥ 80%) or low CRF (VO2peak < 80%) according to age- and gender-stratified reference data. Differences in demographic, CVD and disease-related factors between patients with normal versus low CRF were explored.


In 60 Norwegian patients with IJD [34 females, age 59 years (IQR: 52–63)], mean VO2peak was 30.2 (± 6.9) mL/kg/min, corresponding to 83% (± 18) of normative reference values. Age (coefficient: − 0.18 years, p = 0.01) and fat mass (coefficient: − 0.67 %, p < 0.001) were inversely associated with CRF, while physical activity index (coefficient: 0.13 points, p = 0.05) was positively associated with CRF (R2 = 0.66). There were no significant associations between CRF, classical CVD risk factors and disease-related variables. Compared to patients with low CRF (n = 30), patients with normal CRF (n = 30) had higher peak oxygen uptake (+ 9.4 mL/kg/min, p < 0.001), high-density lipoprotein cholesterol (+ 0.5 mmol L−1, p < 0.001), and exercise self-efficacy (+ 6.9, p < 0.01) as well as lower fat mass (− 8.7%, p < 0.001), resting heart rate (− 8.0 beats/min, p < 0.01) and triglycerides (− 0.5 mmol L−1, p < 0.01).


In this sample of IJD-patients, age, fatmass and physical activity level were associated with CRF. CRF was lower than reference values and patients with normal CRF presented with a more favorable health profile. There is a continued need for exercise interventions to improve CRF in patients with IJD.

Trial registration: NCT04922840.

Peer Review reports


Inflammatory joint diseases (IJD), including rheumatoid arthritis (RA), spondyloarthritis (SpA) and psoriatic arthritis (PsA) are non-communicable diseases that present with a wide range of clinical symptoms, including joint inflammation, pain, fatigue and functional impairments. Furthermore, patients with IJD have an increased risk of cardiovascular disease (CVD), in part due to a high prevalence of traditional CVD risk factors such as hypertension, dyslipidemia and obesity [1]. Systemic inflammation driven by immunological pathways can accelerate atherosclerotic CVD, and is recognized as an independent CVD risk magnifier in the context of IJD [2, 3].

Cardiorespiratory fitness (CRF) is identified as a modifiable prognostic factor for CVD-morbidity, but common CVD risk algorithms do not include CRF in the risk stratification [4]. Routine measures of CRF as a clinical vital sign has been recommended, but seldom realized in patient clinical care [5]. Accordingly, clinicians use traditional variables such as smoking habit, blood pressure, lipid profile, age, sex and anthropometry to stratify CVD risk in patients with IJD [2]. Efforts to improve CVD risk prediction by including rheumatic disease characteristics have so far proven inadequate in accounting for the elevated CVD risk profile driven by IJD [6]. However, consistent testimony of CRF as a strong health predictor dictates a need for increased awareness on the role of CRF in overall health for patients with IJD.

Extensive epidemiological data on CRF as an independent CVD risk modifier [7,8,9] underlie public health recommendations for all adults to participate in regular physical activity and exercise to enhance CRF and mitigate CVD risk [10,11,12]. Notably, patients with IJD tend to be less physically active and present with inferior levels of CRF compared to healthy peers [13,14,15,16]. Patients with increased disease activity may gravitate towards a sedentary lifestyle and, over time, physical inactivity can precipitate a decline in CRF [17,18,19,20]. The relationship between disease activity and CRF has not been extensively investigated, and given that both low levels of CRF and an elevated inflammatory burden may increase CVD risk in IJD, the potential association between disease activity and CRF warrants further investigation.

Emphasis on the elevated risk of CVD in IJD has led to a considerable amount of reports on traditional CVD risk factors in this patient population [21,22,23,24,25]. Despite a strong and inverse correlation between CRF levels and CVD risk in the general population, there is a lack of evidence regarding associates of CRF in IJD and only a handful of studies have examined CVD profile and disease activity in concert with CRF in this patient population [15, 26,27,28,29,30]. Aforementioned studies have employed various measures of CRF and there is a need to replicate study results using the CRF criterion method. Uncovering associates of CRF in IJD may aid healthcare practitioners in identifying patients that can benefit from a CRF assessment to provide a more comprehensive assessment of CVD risk.

The primary aim of this paper was, therefore, to investigate factors that may associate with CRF in a contemporary IJD population. We hypothesized that we would uncover associations between classical CVD risk factors, disease activity and CRF in patients with IJD.

The second objective was to evaluate CRF in patients with IJD relative to reference data from the general population, and explore potential differences in demographic, cardiovascular and IJD-related factors in patients with normal versus low levels of CRF.


Study design and participants

The data underlying this paper stems from baseline visits in the ExeHeart trial ( NCT04922840); a randomized controlled trial with a primary aim to evaluate the effect of high-intensity interval training on CRF in patients with IJD [31]. Ethical approval of the ExeHeart trial, including the present study, was obtained from the Regional Committee for Medical and Health Research Ethics (201227) and the Data Protection Officer at Diakonhjemmet Hospital ( 00397). Patients willing to participate signed an informed consent form before enrolling in the study. All procedures conformed to the Helsinki declaration.

Patients were recruited from the Preventive Cardio-Rheuma Clinic, Center for treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet Hospital, Norway. Patients presenting with an IJD diagnosed by rheumatologist, age 18–70 years, body mass index 18.5–40, ability to walk unaided for ≥ 15 min and Norwegian or English fluency were eligible for inclusion. Exclusion criteria were sustained lower extremity injury or surgery in the past 12 months, primary neurological disease, cognitive disability, presence of one or more contraindications to maximal exercise testing as defined by the American College of Sports Medicine [10] and prior participation in high-intensity interval training ≥ 1/week in the past 3 months. Baseline study visits were carried out from August 2021 to August 2022.


Data collection procedures are fully detailed in the ExeHeart trial protocol [31]. In short, study variables were assessed as follows:

Medical background information including IJD diagnosis and co-morbidities were collected from the patient’s medical record. CRF was assessed by a cardiopulmonary exercise test (CPET) on a treadmill. A modified Balke [32] continuous ramp protocol was applied with initial speed individualized to the patient’s preference. Breath-by-breath gas analysis and 12-lead electrocardiography were measured continuously throughout the exercise test. Blood pressure was recorded every second minute and blood lactate was drawn from the fingertip within one minute of test completion. CRF was quantified as peak oxygen uptake (VO2peak), defined as the highest 30-s average VO2 at any point during the exercise test. In the absence of a VO2 plateau as primary end criteria, Borg rating of perceived exertion 0–10, respiratory exchange ratio, percent of age-predicted peak heart rate (220-age) and post-exercise capillary blood lactate were used to assess level of maximal effort [33]. Normative CPET data nuanced to age and gender facilitated the clinical interpretation of the exercise tests [34], and national reference data was applied to reflect our sample under scrutiny [35].

Body weight, total fat mass, total fat free mass and visceral fat indicator were quantified by bioelectrical impedance analysis. Height was registered by stadiometer, and body mass index (BMI) was calculated as body weight in kilograms divided by the square of height in meters (kg/m2).

Resting heart rate, systolic- and diastolic blood pressure were measured in a supine position by an ambulatory blood pressure monitor and defined as the mean of two single measurements interspaced by 30 s. Non-fasting blood samples were analyzed for total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP).

Clinical measures of disease activity were assessed by Disease Activity Score-28, Disease Activity Index for Psoriatic Arthritis or Ankylosing Spondylitis Disease Activity Score for patients with RA, PsA and SpA, respectively. Disease activity was further categorized to remission, low, moderate and high as previously described [31].

Patients answered a digital questionnaire accommodated by the University of Oslo (nettskjema@ In the present study, we included questionnaire items addressing personal background information, current use of cigarettes and/or snuff, IJD disease duration, pain and fatigue (Numerical Rating Scales 0–10), CVD history and use of medication.

Presence of increased CVD risk was categorized as 1) use of CVD medication such as statins or antihypertensives or 2) increased CVD risk evaluated by Systemic Coronary Risk Estimation 2 (SCORE2) algorithm for low-risk countries, including a 1.5 multiplication factor for all patients presenting with RA [2]. SCORE2 high risk thresholds of ≥ 2.5%, ≥ 5% and ≥ 7.5% were applied for ages < 50, 50–69 and ≥ 70 respectively [12].

Three questions pertaining to frequency, intensity and duration of habitual exercise were applied to generate a physical activity index as described by Nes et al. [36]. Additionally, exercise beliefs and self-efficacy were assessed by a composite score with unit weighing of twenty items over four domains; self-efficacy for exercise, barriers to exercise, benefits of exercise and impact of exercise on arthritis [37].

Statistical analysis

Data are presented as mean ± standard deviation (SD) for normally distributed variables and median (IQR) for non-parametric variables. Categorical data are reported as counts and percentages. Normality was assessed by frequency histograms and quantile–quantile plots and in cases of doubt, a Shapiro–Wilk test was applied. Descriptive data includes complete case analysis, while single-case missing values were imputed by simple mean imputation for inferential analyses.

A multivariable linear regression analysis was applied to evaluate associates of CRF in our study population (VO2peak in mL/kg/min as dependent variable). Based on clinical reasoning and literature review on correlates to CRF, the following variables were entered in our full model: age, gender, fat mass (in % of body weight), current use of cigarettes and/or snuff (yes/no), systolic blood pressure, HDL-c, physical activity index, disease activity and self-reported fatigue [35, 38,39,40]. With the significance level set to 0.05, the full model was reduced to the final model by backward elimination of non-significant variables. Gender and age were kept in the final model regardless of significance level. Model assumptions and model fit were evaluated by residual plots, variance inflation factors and Breusch-Pagan and Cook-Weisberg test for heteroskedasticity.

For each patient, measured VO2peak was calculated in percent of Norwegian gender- and age-stratified reference data [35], and an 80% cut-off [41] was applied to dichotomize the study sample to normal CRF; VO2peak ≥ 80% or low CRF; VO2peak < 80% of reference values. Thereafter, we assessed potential between-group differences regarding anthropometric, CVD- and disease-related variables. Chi-square tests, or Fisher’s exact tests for expected values < 5, were applied for categorical data. Continuous data were analyzed by independent t-tests for normally distributed variables, Welch’s t-test if unequal variance and Wilcoxon rank-sum for non-parametric data. Due to multiple testing and the exploratory nature of these analyses, significance level was herein set to 0.01 with confidence intervals (CI) presented at the 99% level. All statistical analyses were performed using STATA version 16.1.


Demographic, cardiovascular and disease-related characteristics from baseline visits in the ExeHeart trial are presented in Table 1. In the sixty patients included in the present study (57% females), median age was 59 years (IQR 52–63). Mean VO2peak in the study sample was 30.2 (± 6.9) mL/kg/min and median self-reported physical activity corresponded to the lowest value for the composite index (0, IQR 0–15). At the time of data collection, inflammatory markers CRP and ESR were low and disease activity was categorized to remission or low in 39 (65%) patients. Blood pressure and cholesterol levels were within normal range. Twelve (20%) patients reported current use of blood pressure medication and 34 (57%) patients used prescribed statins. Presence of increased CVD risk was observed in 49 (82%) patients.

Table 1 Descriptive statistics from baseline sessions in the ExeHeart study

Table 2 outlines regression coefficients of VO2peak, significance level and 95% CI. In the full multiple regression model, age and fat mass (% of body weight) were significantly associated with VO2peak (R2 = 0.68). Non-significant variables were dismissed in the following order; use of cigarettes/snuff, disease activity, HDL-c, systolic blood pressure and fatigue. In the final model, age and fat mass (% of body weight) were inversely associated with VO2peak, while an increase in physical activity index had a positive influence on VO2peak (R2 = 0.66). There were no violations of regression assumptions.

Table 2 Variables associated with VO2peak (mL/kg/min) assessed by multiple linear regression

Mean VO2peak corresponded to 83% (± 18) of normative data from the Norwegian general population (Fig. 1). Thirty patients (50%) presented with VO2peak ≥ 80% reference values and were categorized to normal CRF, while the remaining 30 patients (50%) presented with VO2peak < 80% and were classified as low CRF (Fig. 1).

Fig. 1
figure 1

VO2peak expressed in percent of Norwegian reference values. Blue line: Age- and gender-specific reference value from normative data [35]. Red line: Mean VO2peak in percent of reference values. Dashed vertical line: Cut-off for normal versus low CRF. CRF: Cardiorespiratory fitness, VO2peak: Peak oxygen uptake

Significant differences were observed for the following variables in favor of patients with normal CRF: VO2peak, fat mass, resting heart rate, HDL-c, triglycerides and exercise self-efficacy. There were no significant differences regarding age, gender, education, diagnosis, disease duration, disease activity, blood pressure, total cholesterol, LDL-c, current use of cigarettes/snuff, presence of increased CVD risk, pain, fatigue, inflammatory markers, medication or physical activity index (Table 3).

Table 3 Exploratory between-group tests; normal CRF versus low CRF


In the present cross-sectional study, age, fat mass and self-reported physical activity were associated with CRF (measured as VO2peak), and there were no significant associations between traditional CVD risk factors, disease activity and CRF in patients with IJD. Self-reported physical activity level was low, and in fifty percent of the patients, CRF was below 80% of reference values from the general population. Furthermore, in comparison to patients with CRF levels that aligned with normal reference values, patients with low CRF presented with higher fat mass, resting heart rate and triglycerides in concert with inferior HDL-c and exercise self-efficacy.

Our results complement extensive evidence that age and measures of anthropometry are known correlates of CRF in the general population [34, 38]. The non-significant association of gender and CRF in our data is puzzling, and we assume that the relatively small sample size may have obscured superior CRF values commonly observed in males [35, 42]. Our finding of a significant association of physical activity index to CRF parallels the work by Liff et al., where apart from BMI, level of physical activity was attributed the highest standardized coefficient of CRF in patients with RA [27]. Congruous data from an observational study in patients with RA confirmed inferior physical activity in patients at the lower end of the CRF spectrum [15], and in patients with SpA, physical activity measured by accelerometry was positively associated with CRF [14]. Conflicting results were reported from a recent case–control study involving patients with SpA, with no difference in physical activity despite higher estimated CRF in healthy participants [29]. Disparity in study results may be attributed to different population characteristics, methods of evaluating CRF and physical activity, and statistical modelling. Nonetheless, considering the well-known effect of physical activity on CRF, a connection between these two variables seems highly reasonable.

Discordant to our hypothesis, we unveiled no association between CVD risk factors and CRF in patients with IJD. Our results contrast prior observations of smoking status, blood pressure, serum lipids and resting heart rate as significant associates of CRF in other IJD samples [15, 26,27,28]. Four out of five patients in our cohort were categorized as having a CVD risk factor. Notably, measures of blood pressure and cholesterol were within recommended values [12]. Patients were recruited from a Preventive Cardio-Rheuma clinic and we assume that observed levels of blood pressure and cholesterol were duly influenced by adequate prescription of statins and/or antihypertensives. Blood pressure and cholesterol levels may relate to CRF in populations naïve to CVD medication, but our data indicate no such association in patients that are well managed in terms of these traditional CVD risk factors.

A plausible relationship between disease activity and CRF rests on assumptions that besides beneficial effects on CRF, exercise can upregulate anti-inflammatory cytokines and modulate the inflammatory profile in IJD [43, 44]. Contrary to our hypothesis, we detected no significant association between disease activity and CRF in our cohort. Paralleling our results, CRF was not correlated to composite measures of disease activity in Taiwanese [45] and Turkish [46] patients with SpA, and in UK patients with RA, estimated CRF did not correlate with disease-related variables [28]. However, other studies have reported an inverse association between ESR and CRF in patients with IJD [30, 47], and in the work by Metsios et al., both ESR and CRP were significantly elevated in RA patients categorized as unfit [15]. Interestingly, Liff et al. found that patient global assessment of disease activity was associated to CRF in patients with RA, but observed no relationship between clinical measures of disease activity and CRF [27]. This may serve to illustrate that despite the advent of biologic therapies and targets of disease remission in IJD, there may be discrepancies between what is captured by clinical measures of disease activity and the patient’s perception of disease burden. Considering the high prevalence of fatigue in IJD [48] and positive correlation to disease activity [49, 50], we addressed fatigue as a possible associate of CRF. Although few studies have assessed this relationship, low levels of physical activity correlate with fatigue in patients with IJD [40], and an inactive lifestyle can negatively impact CRF. There was no evidence of an association between fatigue and CRF in our data. However, median fatigue values were relatively low, and our unidimensional measure of fatigue may have fallen short of capturing various dimensions of fatigue in our patient cohort [51].

In the present study, CRF in patients with IJD was inferior to CRF in healthy Norwegian counterparts [35]. Observed values may differ from what is reported elsewhere, but direct comparison across studies is difficult due to variance in design, testing methodology and participant characteristics. Our finding of low CRF aligns with previous data of inferior CRF in Norwegian patients with RA and SpA [27, 47]. In support, Metsios et al. reported crucially low CRF in patients with RA [15], while O’Dwyer et al. observed inferior submaximal fitness in patients with SpA when compared to healthy peers [14]. Apart from interventional studies, there is currently a paucity of studies that have assessed CRF in patients with PsA.

Our exploratory analyses suggest that in IJD, patients with normal CRF present with favorable levels of fat mass, HDL-c and triglycerides in comparison to patients with low CRF irrespective of statin use. Although no causality can be inferred from these cross-sectional data, patients with normal CRF may have an increased exercise uptake and reap the benefits of exercise-induced changes in body composition and lipid profile [52, 53]. In alignment, Aspenes et al. observed advantageous cardiovascular risk profiles in individuals in the upper quartile of CRF, whereas an increased odds of CVD risk factor clustering was reported in the lowest CRF quartile [35].

In the context of IJD, motivation to exercise can enhance level of physical activity and CRF [54]. Our data signals lower exercise beliefs and self-efficacy in the least fit patients and supports the notion of superior CRF in patients that are motivated to exercise on a regular basis and believe exercise can benefit their IJD. Furthermore, we applied a physical activity index that assigns surplus weight to self-reported intensity of exercise. Although the significance level was just shy of our pre-defined alpha level, physical activity index was diminished in patients with low CRF, thus indicating that vigorous exercise is relatively uncommon in patients at the lower end of the fitness spectrum. These findings are not surprising, seeing as, aside from hereditary factors, vigorous exercise is a known determinant of CRF [4, 38].

Collectively, our results suggest that when disease activity and CVD risk factors are well managed in patients with IJD, associates of CRF parallel those of the general population. Future prospective studies are necessary to assess if fluctuations in CVD risk factors and disease activity can impact CRF in modern IJD care. Furthermore, repeated observations of reduced CRF implies presence of a CVD risk factor that needs to be addressed in order to optimize the cardiovascular profile and overall health in patients with IJD. Advocates of ‘Exercise is Medicine’ emphasize that pharmaceuticals have little influence on CRF, and call for integrated promotion and prescription of exercise as therapy [55, 56]. Our data supports a continued need to implement and evaluate exercise interventions to increase CRF and moderate CVD risk in patients with IJD.

Strengths and limitations

A major strength of the current study is the use of the criterion method to quantify CRF [4]. Additionally, our choice of backward multiple regression with independent variables was driven by theoretical rationale as opposed to embracing significant variables from univariate analyses [57].

Limitations of the present study include absence of causal inference due to cross-sectional data. The data presented herein rests on baseline data from an RCT. We acknowledge the potential selection bias held by RCTs [58, 59] and that patients with low exercise self-efficacy may have been discouraged from participating. However, this may have introduced a positive bias to our CRF data given that patients disinterested in exercise trials are likely to present with even lower CRF than what was observed in our cohort. Patients were recruited from a Preventive Cardio-Rheuma clinic that emphasizes optimal management of CVD risk factors. Accordingly, CVD risk factors in our cohort may differ from other IJD populations. Our sample size is relatively small and although education level, smoking status and physical activity level are comparable to other Scandinavian IJD samples [13, 60], caution is advised in generalizing study results to the IJD population at large.

The sample size was leveraged by the power calculation for the ExeHeart RCT and associates of CRF may have been sequestered by low sample size (type 2 error). To avoid overfitting the regression model, we narrowed the IJD-specific independent variables in our analysis to include disease activity and fatigue. Instrument-specific thresholds were used to categorize disease activity across study participants with different IJD entities, and categorical data on disease activity may be too coarse to uncover a true relationship between disease activity and CRF. Furthermore, all our data on disease activity reflect current inflammatory burden and does not account for inflammatory burden over the course of disease.

A further limitation is the use of whole-body bioelectrical impedance analysis to quantify body composition. In bioelectrical impedance analysis, precision of fat mass and fat-free mass falls short of the reference method dual energy X-ray absorptiometry [61], and measures of body composition in the present study should be considered as approximates.

Lastly, we dichotomized CRF and recognize that even if creating binary variables is common in health research, cut-points are challenging to define and the practice of binary splits may be affiliated with loss of information [62]. Consequently, the results from the exploratory analyses regarding differences in patients with low versus normal CRF should be interpreted with caution.


In the present study, age, fatmass and physical activity level were associated with CRF in patients with IJD. We observed lower levels of CRF compared to the general population, and our data suggests that patients with normal CRF may present with favorable levels of VO2peak, fat mass, resting heart rate, HDL-c, triglycerides and exercise self-efficacy. Our results support data headlining inferior CRF levels in patients with IJD, further illustrating a continued need for exercise interventions to improve CRF.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.



Body mass index


Bloor pressure


Confidence interval


Cardiopulmonary exercise test


Cardiorespiratory fitness


C-reactive protein


Cardiovascular disease


Disease-modifying anti-rheumatic drugs


Erythrocyte sedimentation rate


High-density lipoprotein cholesterol


Inflammatory joint disease


Janus Kinase inhibitors


Low-density lipoprotein cholesterol


Psoriatic arthritis


Rheumatoid arthritis


Randomized controlled trial


Systemic coronary risk estimation 2


Standard deviation

VCO2 :

Volume of carbon dioxide production

VO2 :

Volume of oxygen uptake

VO2peak :

Peak oxygen uptake


  1. Agca R, Heslinga SC, van Halm VP, Nurmohamed MT. Atherosclerotic cardiovascular disease in patients with chronic inflammatory joint disorders. Heart (British Cardiac Society). 2016;102(10):790–5.

    CAS  PubMed  Google Scholar 

  2. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McInnes IB, Peters MJ, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  3. England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ. 2018;361: k1036.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a Scientific Statement from the American Heart Association. Circulation. 2016;134(24):e653–99.

    Article  PubMed  Google Scholar 

  5. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J. 2018;39(14):1144–61.

    Article  PubMed  Google Scholar 

  6. Colaco K, Ocampo V, Ayala AP, Harvey P, Gladman DD, Piguet V, et al. Predictive utility of cardiovascular risk prediction algorithms in inflammatory rheumatic diseases: a systematic review. J Rheumatol. 2020;47(6):928–38.

    Article  CAS  PubMed  Google Scholar 

  7. Letnes JM, Dalen H, Vesterbekkmo EK, Wisloff U, Nes BM. Peak oxygen uptake and incident coronary heart disease in a healthy population: the HUNT Fitness Study. Eur Heart J. 2019;40(20):1633–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  9. Han M, Qie R, Shi X, Yang Y, Lu J, Hu F, et al. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose-response meta-analysis of cohort studies. Br J Sports Med. 2022;56(13):733–9.

    Article  PubMed  Google Scholar 

  10. Riebe D, Ehrman JK, Liguori G, Magal M. ACSM's guidelines for exercise testing and prescription. Tenth edition. ed. Philadelphia: Wolters Kluwer;2018.

  11. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–62.

    Article  PubMed  Google Scholar 

  12. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.

    Article  PubMed  Google Scholar 

  13. Karstensen JK, Primdahl J, Andersson MLE, Christensen JR, Bremander A. Lifestyle factors in patients with rheumatoid arthritis-a cross-sectional study on two Scandinavian cohorts. Clin Rheumatol. 2022;41(2):387–98.

    Article  PubMed  Google Scholar 

  14. O’Dwyer T, O’Shea F, Wilson F. Decreased physical activity and cardiorespiratory fitness in adults with ankylosing spondylitis: a cross-sectional controlled study. Rheumatol Int. 2015;35(11):1863–72.

    Article  PubMed  Google Scholar 

  15. Metsios GS, Koutedakis Y, Veldhuijzen van Zanten JJ, Stavropoulos-Kalinoglou A, Vitalis P, Duda JL, et al. Cardiorespiratory fitness levels and their association with cardiovascular profile in patients with rheumatoid arthritis: a cross-sectional study. Rheumatology (Oxford, England). 2015;54(12):2215–20.

  16. Sokka T, Häkkinen A, Kautiainen H, Maillefert JF, Toloza S, Mørk Hansen T, et al. Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum. 2008;59(1):42–50.

    Article  PubMed  Google Scholar 

  17. Hernández-Hernández MV, Sánchez-Pérez H, Luna-Gómez C, Ferraz-Amaro I, Díaz-González F. Impact of disease activity on physical activity in patients with psoriatic arthritis. Arthritis Care Res. 2021;73(12):1834–44.

    Article  Google Scholar 

  18. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124(5):799–815.

    Article  CAS  PubMed  Google Scholar 

  19. Tada M, Yamada Y, Mandai K, Matsumoto Y, Hidaka N. Daily physical activity measured by a wearable activity monitoring device in patients with rheumatoid arthritis. Clin Rheumatol. 2022;41(7):2011–9.

    Article  PubMed  Google Scholar 

  20. Fongen C, Halvorsen S, Dagfinrud H. High disease activity is related to low levels of physical activity in patients with ankylosing spondylitis. Clin Rheumatol. 2013;32(12):1719–25.

    Article  PubMed  Google Scholar 

  21. Wibetoe G, Ikdahl E, Rollefstad S, Olsen IC, Bergsmark K, Kvien TK, et al. Cardiovascular disease risk profiles in inflammatory joint disease entities. Arthritis Res Ther. 2017;19(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Crowson CS, Rollefstad S, Ikdahl E, Kitas GD, van Riel P, Gabriel SE, et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann Rheum Dis. 2018;77(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  23. Liew JW, Ramiro S, Gensler LS. Cardiovascular morbidity and mortality in ankylosing spondylitis and psoriatic arthritis. Best Pract Res Clin Rheumatol. 2018;32(3):369–89.

    Article  PubMed  Google Scholar 

  24. Baghdadi LR, Woodman RJ, Shanahan EM, Mangoni AA. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta-analysis. PLoS ONE. 2015;10(2):e0117952-e.

  25. Gulati AM, Semb AG, Rollefstad S, Romundstad PR, Kavanaugh A, Gulati S, et al. On the HUNT for cardiovascular risk factors and disease in patients with psoriatic arthritis: population-based data from the Nord-Trondelag Health Study. Ann Rheum Dis. 2016;75(5):819–24.

    Article  CAS  PubMed  Google Scholar 

  26. Halvorsen S, Vollestad NK, Provan SA, Semb AG, van der Heijde D, Hagen KB, et al. Cardiorespiratory fitness and cardiovascular risk in patients with ankylosing spondylitis: a cross-sectional comparative study. Arthritis Care Res (Hoboken). 2013;65(6):969–76.

    Article  PubMed  Google Scholar 

  27. Liff MH, Hoff M, Fremo T, Wisloff U, Thomas R, Videm V. Cardiorespiratory fitness in patients with rheumatoid arthritis is associated with the patient global assessment but not with objective measurements of disease activity. RMD Open. 2019;5(1): e000912.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cooney JK, Ahmad YA, Moore JP, Sandoo A, Thom JM. The impact of cardiorespiratory fitness on classical cardiovascular disease risk factors in rheumatoid arthritis: a cross-sectional and longitudinal study. Rheumatol Int. 2019;39(10):1759–66.

    Article  CAS  PubMed  Google Scholar 

  29. Köseoğlu Tohma E, Günendi Z, Özyemişçi Taşkıran Ö, Mengi G, Demirsoy N, Taş N. Exercise capacity in axial spondyloarthritis and associated factors: a cross-sectional controlled study. Int J Rheum Dis. 2021;24(8):1014–23.

    Article  PubMed  Google Scholar 

  30. Ångström L, Hörnberg K, Sundström B, Jonsson SW, Södergren A. Aerobic capacity is associated with disease activity and cardiovascular risk factors in early rheumatoid arthritis. Physiother Res Int. 2020;25(3): e1833.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nordén KR, Dagfinrud H, Semb AG, Hisdal J, Viktil KK, Sexton J, et al. Effect of high-intensity exercise on cardiorespiratory fitness, cardiovascular disease risk and disease activity in patients with inflammatory joint disease: protocol for the ExeHeart randomised controlled trial. BMJ Open. 2022;12(2): e058634.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balke B, Ware RW. An experimental study of physical fitness of Air Force personnel. UN Armed Forces Med J. 1959;10(6):675–88.

    CAS  Google Scholar 

  33. Pritchard A, Burns P, Correia J, Jamieson P, Moxon P, Purvis J, et al. ARTP statement on cardiopulmonary exercise testing 2021. BMJ Open Respir Res. 2021;8(1).

  34. Kaminsky LA, Myers J, Arena R. Determining cardiorespiratory fitness with precision: compendium of findings from the FRIEND Registry. Prog Cardiovasc Dis. 2019;62(1):76–82.

    Article  PubMed  Google Scholar 

  35. Aspenes ST, Nilsen TI, Skaug EA, Bertheussen GF, Ellingsen O, Vatten L, et al. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc. 2011;43(8):1465–73.

    Article  PubMed  Google Scholar 

  36. Nes BM, Janszky I, Vatten LJ, Nilsen TI, Aspenes ST, Wisloff U. Estimating VO2peak from a nonexercise prediction model: the HUNT Study, Norway. Med Sci Sports xercise. 2011;43(11):2024–30.

  37. Gecht MR, Connell KJ, Sinacore JM, Prohaska TR. A survey of exercise beliefs and exercise habits among people with arthritis. Arthritis Care Res. 1996;9(2):82–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zeiher J, Ombrellaro KJ, Perumal N, Keil T, Mensink GBM, Finger JD. Correlates and determinants of cardiorespiratory fitness in adults: a systematic review. Sports Med Open. 2019;5(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wagner J, Knaier R, Infanger D, Königstein K, Klenk C, Carrard J, et al. Novel CPET reference values in healthy adults: associations with physical activity. Med Sci Sports Exerc. 2021;53(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  40. Ingram T, Sengupta R, Standage M, Barnett R, Rouse P. Correlates of physical activity in adults with spondyloarthritis and rheumatoid arthritis: a systematic review. Rheumatol Int;2022.

  41. Levett DZH, Jack S, Swart M, Carlisle J, Wilson J, Snowden C, et al. Perioperative cardiopulmonary exercise testing (CPET): consensus clinical guidelines on indications, organization, conduct, and physiological interpretation. Br J Anaesth. 2018;120(3):484–500.

    Article  CAS  PubMed  Google Scholar 

  42. Kaminsky LA, Arena R, Myers J, Peterman JE, Bonikowske AR, Harber MP, et al. Updated reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the fitness registry and the importance of Exercise National Database (FRIEND). Mayo Clin Proc. 2022;97(2):285–93.

    Article  PubMed  Google Scholar 

  43. Docherty S, Harley R, McAuley JJ, Crowe LAN, Pedret C, Kirwan PD, et al. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci Med Rehabil. 2022;14(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Metsios GS, Moe RH, Kitas GD. Exercise and inflammation. Best Pract Res Clin Rheumatol. 2020;34(2): 101504.

    Article  PubMed  Google Scholar 

  45. Hsieh LF, Wei JC, Lee HY, Chuang CC, Jiang JS, Chang KC. Aerobic capacity and its correlates in patients with ankylosing spondylitis. IntJRheumDis;2014.

  46. Çağliyan Türk A, Arslan S, Karavelioğlu Y, Kalcik M, Özel S, Musmul A, et al. Pulmonary function, aerobic capacity and related variables in patients with Ankylosing Spondylitis. Arch Rheumatol. 2019;34(3):317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Halvorsen S, Vollestad NK, Fongen C, Provan SA, Semb AG, Hagen KB, et al. Physical fitness in patients with ankylosing spondylitis: comparison with population controls. Phys Ther. 2012;92(2):298–309.

    Article  PubMed  Google Scholar 

  48. Esbensen BA, Stallknecht SE, Madsen ME, Hagelund L, Pilgaard T. Correlations of fatigue in Danish patients with rheumatoid arthritis, psoriatic arthritis and spondyloarthritis. PLoS ONE. 2020;15(8): e0237117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madsen SG, Danneskiold-Samsøe B, Stockmarr A, Bartels E. Correlations between fatigue and disease duration, disease activity, and pain in patients with rheumatoid arthritis: a systematic review. Scand J Rheumatol. 2016;45(4):255–61.

    Article  PubMed  Google Scholar 

  50. Lai TL, Au CK, Chung HY, Leung MC, Ng WL, Lau CS. Fatigue in psoriatic arthritis: Is it related to disease activity? Int J Rheum Dis. 2021;24(3):418–25.

    Article  CAS  PubMed  Google Scholar 

  51. Elera-Fitzcarrald C, Rocha J, Burgos PI, Ugarte-Gil MF, Petri M, Alarcón GS. Measures of fatigue in patients with rheumatic diseases: a critical review. Arthritis Care Res. 2020;72(Suppl 10):369–409.

    Article  Google Scholar 

  52. Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101:9–20.

    Article  CAS  PubMed  Google Scholar 

  53. Kolnes KJ, Petersen MH, Lien-Iversen T, Højlund K, Jensen J. Effect of exercise training on fat loss-energetic perspectives and the role of improved adipose tissue function and body fat distribution. Front Physiol. 2021;12: 737709.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Videm V, Hoff M, Liff MH. Use of the Behavioral Regulation in Exercise Questionnaire-2 to assess motivation for physical activity in persons with rheumatoid arthritis: an observational study. Rheumatol Int. 2022;42(11):2039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aspenes ST, Nauman J, Nilsen TI, Vatten LJ, Wisloff U. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study. Med Sci Sports Exerc. 2011;43(9):1675–9.

    Article  PubMed  Google Scholar 

  56. Lobelo F, Stoutenberg M, Hutber A. The exercise is medicine global health initiative: a 2014 update. Br J Sports Med. 2014;48(22):1627–33.

    Article  PubMed  Google Scholar 

  57. Slinker BK, Glantz SA. Multiple linear regression: accounting for multiple simultaneous determinants of a continuous dependent variable. Circulation. 2008;117(13):1732–7.

    Article  PubMed  Google Scholar 

  58. Grimes DA, Schulz KF. An overview of clinical research: the lay of the land. Lancet. 2002;359(9300):57–61.

    Article  PubMed  Google Scholar 

  59. Thomsen T, Esbensen BA, Hetland ML, Aadahl M. Characteristics of participants and decliners from a randomized controlled trial on physical activity in patients with rheumatoid arthritis: a retrospective register-based cross-sectional study. Scand J Rheumatol. 2023;52(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  60. Kerola AM, Kazemi A, Rollefstad S, Lillegraven S, Sexton J, Wibetoe G, et al. All-cause and cause-specific mortality in rheumatoid arthritis, psoriatic arthritis and axial spondyloarthritis: a nationwide registry study. Rheumatology (Oxford, England);2022.

  61. Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast Media Mol Imaging. 2019;2019:3548284.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank the patients willing to participate in the ExeHeart trial and the Norwegian League against Rheumatism/Norwegian Rheumatism Association for collaboration in the planning of the study. Furthermore, we thank nurse Anne Stormyr Eirheim for training in measures of arterial stiffness and indispensable help in patient enrollment, Emilie Andrea Bakke for valuable assistance in data collection and Kirsten K. Viktil for support regarding data on use of medication.


The ExeHeart trial is supported by the Dam foundation (grant number 2021/FO347439), REMEDY- Center for treatment of Rheumatic and Musculoskeletal Diseases (grant number 328657), Dr Trygve Gythfeldt and Wife research fund (June 2021, no grant number), the Norwegian Rheumatism Association (November 2021, no grant number) and the Norwegian Health Association (25576). The funding sources have no role in the design, analysis and interpretation of the study.

Author information

Authors and Affiliations



KRN: Study design, acquisition of data, drafting the article and final approval of the manuscript. AGS, CF: Study design, acquisition of data, critical revision and final approval of the manuscript. ATT, HD, JH, SØ, GM, JSe, JSk, TB: Study design, critical revision and final approval of the manuscript.

Corresponding author

Correspondence to Kristine Røren Nordén.

Ethics declarations

Ethics approval and consent to participate

The ExeHeart trial, including the present study, was granted ethical approval from the Regional Committee for Medical and Health Research Ethics (201227) and the Data Protection Officer at Diakonhjemmet Hospital ( 00397). All patients signed an informed consent form before participating in the study and all study protocols were performed in accordance with the declaration of Helsinki.

Consent for publication

Not applicable as the present study does not present individual person’s data.

Competing interests

KRN has received lecture honoraria from UCB. AGS has received lecture honoraria from AbbVie, Novartis, Bayer, Eli Lilly, Pfizer and Sanofi. AGS is secretary of ESC Cardiovascular Pharmacotherapy working group, nucleus member of EACP Risk Factor Management and Primary care nucleus, all gratuitous. GM has received lecture honoraria from Novartis. HD, JH, SØ, JSe, CF, JSk, TB and ATT have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordén, K.R., Semb, A.G., Dagfinrud, H. et al. Associations between cardiovascular risk factors, disease activity and cardiorespiratory fitness in patients with inflammatory joint disease: a cross-sectional analysis. BMC Sports Sci Med Rehabil 15, 63 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • (MESH terms) Cardiorespiratory fitness
  • Cardiovascular diseases
  • Rheumatoid arthritis
  • Spondyloarthritis