- Research article
- Open access
- Published:
Hop tests and psychological PROs provide a demanding and clinician-friendly RTS assessment of patients after ACL reconstruction, a registry study
BMC Sports Science, Medicine and Rehabilitation volumeĀ 12, ArticleĀ number:Ā 32 (2020)
Abstract
Background
There is growing interest in assessing psychological well-being in patients after anterior cruciate ligament (ACL) reconstruction. It is unknown whether an assessment of psychological outcome in addition to tests of muscle function can facilitate decisions on return to sport (RTS). Therefore, the aim of this study was to evaluate passing rates in different physical RTS test batteries, with and without the inclusion of psychological outcome measures 1āyear after ACL reconstruction.
Method
In this cross-sectional cohort study a total of 320 patients (51% men) aged 18ā65āyears were included 1āyear after ACL reconstruction. Passing rates on different muscle function (MF) test batteries (with results presented as Limb Symmetry Index (LSI)), consisting of knee extension and flexion strength tests, 3 hop tests, and 2 psychological patient-reported outcomes (PROs); Quality of Life subscale from the Knee injury and Osteoarthritis Outcome Score (KOOS QoL) and ACL Return to Sport after Injury (ACL-RSI), were evaluated 1āyear after ACL reconstruction. Muscle function test batteries comprised: 2 MF tests (vertical hop and hop for distance; passā=ā90% LSI); 2 MF tests and 2 PRO (passā=ā90% LSI, 62.5 points on KOOS QoL and 76.6 points on ACL-RSI), 5 MF tests (2 strength and 3 hop tests, passā=ā90% LSI), and 5 MF tests and 2 PRO (passā=ā90% LSI, 62.5 points on KOOS QoL and 76.6 points on ACL-RSI).
Results
Passing rates in the different test batteries were 47% for 2 MF tests, 19% for 2 MF tests and 2 PROs, 29% for 5 MF tests and 13% for 5 MF tests and 2 PROs. The use of psychological PROs together with tests of muscle function gave the lowest passing rate (13%). There was a very strong correlation between passing 2 hop tests and 2 PROs and passing 5 MF tests (rĻā=ā0.41) as well as passing 5 MF tests and 2 PROs (rĻā=ā0.79).
Conclusion
The use of hop tests together with psychological PROs provides a clinician-friendly RTS test battery for assessment 1āyear after ACL reconstruction as the passing rate was 19% when using 2 hop-tests combined with 2 PROs, compared with 29% when using 5 tests of MF requiring advanced testing equipment.
Introduction
After an anterior cruciate ligament (ACL) reconstruction, up to 30% of patients suffer a second knee injury within 5āyears from surgery [1]. Consequences associated with a second ACL injury are for instance lower level of physical activity, knee pain and knee-joint osteoarthritis [2, 3]. Reaching return to sport (RTS) criteria based on objective assessments of muscle function (MF) in the lower extremity, prior returning to sport, can reduce the risk of a second ACL injury [4, 5]. SinceĀ a safe RTS after an ACL injury is a milestone for a majority of patients, it recieves much attention [6, 7]. A proper assessment of MF after ACL injury and reconstruction should comprise measures of quadriceps and hamstring strength as well as measures of functional performance, such as hop tests [8]. As an athletic injury always is followed by a psychological response, psychological outcome measures have become more common in the assessment of patients with an ACL injury [9,10,11].
In a recent systematic review of clinical practice guidelines (CPG) for rehabilitation after ACL reconstruction, the evaluation of psychological measures was recommended in 2 out of 5 CPGs [12]. Despite that the importance of psychological factors during rehabilitation and RTS has been widely recognized [13, 14], its implementation in the evaluation prior to RTS is scarce. Time and tests of physical performance, are the most common used RTS criteria [15].
Results from only hop performance can be insufficient as RTS criteria. Furthermore, as demands increase by adding more MF tests, the passing rate (the proportion of patients reaching a given cut-off value) is reduced [16,17,18]. It is, however, unknown if adding an assessment of psychological outcome to MF tests will result in different passing rates, resulting in a better foundation for decisions on RTS.
The aim of this study was therefore to evaluate passing rates in different physical RTS test batteries, with and without the inclusion of psychological outcome measures 1āyear after ACL reconstruction.
Methods
This cross-sectional study was based on data extracted from a rehabilitation outcome registry, Project ACL, on 8 February 2019. Project ACL was established in 2014 and aims to improve the care of patients with an ACL injury through the use of regular assessments as well as to provide patients and clinicians with treatment feedback. Data are collected prospectively at predefined follow-ups with ACL injury or ACL reconstruction as baseline [19,20,21]. The follow-up data consist of validated tests of MF and patient-reported outcomes (PROs). The patients undergo individualized rehabilitation under supervision of a registered physical therapist. Ethical approval has been obtained from the Regional Ethical Review Board (registration numbers: 265ā13, T023ā17).
In the present study, data from the 1-year follow-up were extracted for analysis. Patients included in the registry were eligible if: aged 18ā65āyears, had undergone a unilateral ACL reconstruction and attended Project ACLās 1-year follow-up. Patients were excluded if any of the following criteria was met; registered with a second ACL injury, had not performed 1 or more of the 5 tests in the battery of MF tests, or had not responded to the Knee injury and Osteoarthritis Outcome Score, subscale Quality of Life (KOOS QoL) or the ACL Return to Sport after Injury scale (ACL-RSI).
Muscle function
The tests of MF comprised of 2 strength and 3 hop tests. Patients are required to go through a detailed familiarization procedure with their responsible physical therapist before they are tested in Project ACL. Before testing, patients performed a standardized warm up of 10āmin on a stationary bike and sub maximum trials on each test (TableĀ 1) [22].
Maximum concentric knee muscle strength was tested in unilateral knee extension and knee flexion at 90°/second using an isokinetic dynamometer (Biodex System 4; Biodex Medical System, Shirley, NY, USA). The Biodex dynamometer is reliable for testing muscle strength [23]. Peak torque in Newton meters (Nm) is used for analysis in this study.
Hop performance is measured with 3 single-leg hop tests: vertical hop (Muscle lab, Ergotest Technology, Oslo, Norway), hop for distance and a 30-s side-hop test. Each hop test was performed with the patients holding their hands behind their back. For the vertical hop, the time from take-off to landing was converted into hop height in centimeters. In the hop for distance test, the distance between top of the toes at take-off to heel at landing was measured in centimeters. For the 30ās side hop test, one trial per leg was allowed, where the patient was instructed to hop as many times as possible over 2 lines 40ācm apart. The number of hops was recorded. The hop tests have good validity and reliability for measuring hop performance in patients with an ACL injury or reconstruction [22].
The results of the tests are presented as the Limb Symmetry Index (LSI), which is the result for the injured leg, divided by the result for the uninjured leg, multiplied by 100 and expressed as a percentage.
Psychological patient-reported outcome
The KOOS is valid and reliable for patients with an ACL injury [24]. The KOOS comprises 5 subscales: Pain, Symptoms, Activity of daily living, Function in sports and recreation, and QoL. Each item is rated from 0 to 4 on a 5-point Likert scale. In this study, the subscale of QoL was used.
The ACL-RSI has been developed to measure an athleteās psychological readiness to return to sport. The ACL-RSI is reliable, valid, and widely used to predict return to sport [25, 26]. Each item is graded from 0 to 10, where 10 indicates the greatest readiness to return to sport. In this study, the 12-item version was used [26].
The Tegner Activity Scale (Tegner) is meant to reflect how strenuous a physical activity is for the knee [27]. The scale ranges from 0 to 10, where 10 indicates the most knee strenuous physical activity. The scale has good validity for patients with an ACL reconstruction [28]. In the present study, a modified version was used [20]. The modified version does not contain any ā0ā value, which represents āsick leave or disability pension because of knee problemsā in the original version of the Tegner, and has recreation sports as a choice up to level 9.
The PROs were chosen as the ACL-RSI is specifically developed for patients with ACL injuries, and has been reported with the highest methodological quality to assess patients with ACL reconstruction [29]. The QoL is a subscale of the KOOS which reflects the impact of the knee injury on patientās life and is commonly used to assess patients after primary ACL injury [30].
Test batteries
In this study, 4 different test batteries were evaluated. The names of the test batteries subsequently used in this paper are presented in TableĀ 2.
For the 2 MF tests, the vertical hop and the hop for distance were chosen as Abrahams et al. [31] reported these tests as the most commonly used functional tests following ACL reconstruction. Furthermore, the 2 hop tests require minimal equipment, cost or training compared to isokinetic testing and were chosen as clinician friendly. The battery of 5 MF tests was chosen as current consensus criteria for assessment of patients after ACL reconstruction include testing of both muscle strength and hop performance [8].
Definition of passing
Passing the tests of MF was defined as achieving an LSI value of ā„90% [8]. When 2 or 5 tests of MF were taken into account, passing was achieved when the LSI was ā„90% in all tests taken into account.
For the psychological PROs, Muller et al. [32] suggested a score of 62.5 points for the KOOS QoL as a threshold for the state of āfeeling wellā. With regard to the ACL-RSI, McPherson et al. [33] presented that a cut-off of 76.6 points in young patients had maximal sensitivity (78%, with 39% specificity) for discriminating between patients who sustain a second ACL injury and patients who do not within 2āyears from the index ACL reconstruction [34]. These 2 cut-offs for the KOOS QoL and the ACL-RSI were applied in this study and scores above the cut-offs were considered as passing.
Statistics
Statistical analysis was performed with the Statistical Package for Social Sciences (SPSS) (version 24, SPSS Inc., Chicago, IL, USA). Mean values, standard deviations, counts and percentages were calculated and presented for demographic data. To compare passing rates between the different test batteries, the sign test was used. Alpha was set at <ā0.05. To test correlations, the Phi coefficient was used for binary variables. Reference values used for the Phi coefficient were: >ā0.05ā=āweak; >ā0.10ā=āmoderate; >ā0.15ā=āstrong; >ā0.25ā=āvery strong [35].
Results
A total of 320 patients (51% men) met the final inclusion criteria for the study (Fig.Ā 1).
On average, patients were 27.1ā±ā9āyears old and had a BMI of 23.7ā±ā2ākg/m2 at the time of ACL reconstruction. The majority of patients underwent ACL reconstruction with a hamstring tendon autograft (85%) (TableĀ 3).
There were 47% (nĀ =ā152) of the patients passing 2 MF tests (LSI ā„90%), compared with 19% (nĀ =ā61) passing 2 MF tests and 2 PROs (pĀ ā¤ā0.001). There were 29% (nĀ =ā92) passing 5 MF tests, compared with 13% (nĀ =ā41) passing 5 MF tests and 2 PROs (pĀ ā¤ā0.001) (Fig.Ā 2). Passing rates (19%) on 2 MF tests and 2 PROs were significantly (pĀ ā¤ā0.001) lower than passing rates (29%) on 5 MF tests.
Proportion (%) of 320 patients passing the different return to sport test batteries; 2 MFā=āvertical hop and hop for distance; 2 MFā+ā2PROsā=āvertical hop, hop for distance, KOOS QoL and ACL-RSI; 5 MF testsā=āknee extension, knee flexion, vertical hop, hop for distance and side hop; 5 MF tests +ā2 PROsā=āknee extension, knee flexion, vertical hop, hop for distance, side hop, KOOS QoL and ACL-RSI; āĀ =Ā pĀ <ā0.001; ACL-RSIā=āThe Anterior Cruciate Ligament Return to Sport after Injury; KOOS QoLā=āThe Knee injury and Osteoarthritis Outcome Score, subscale Quality of Life; MFā=āmuscle function; PROā=āPatient Reported Outcome
A total of 47% (nĀ =ā152) of the patients met the cut-off for ACL-RSI, while 62% (nĀ =ā198) met the cut-off for KOOS QoL (pĀ ā¤ā0.001). When adding ACL-RSI or KOOS QoL to 2 MF tests, the passing rates decreased from 47% (nā=ā152) to 20% (nĀ =ā65) (ACL-RSI) and 31% (nĀ =ā98) (KOOS QoL), respectively (pāā¤ā0.001). When adding ACL-RSI or KOOS QoL to 5 MF tests, the passing rates decreased from 29% (nĀ =ā92) to 14% (nĀ =ā44) (ACL-RSI) and 20% (nĀ =ā63) (KOOS QoL), respectively (pĀ ā¤ā0.001) (Fig.Ā 3).
Proportion of patients passing cut-offs when adding one PRO at a time. āĀ =āpā<ā0.001 in comparison between passing rates when adding each of the PROs; 2 MFā=āvertical hop and hop for distance; 5 MF testsā=āknee extension, knee flexion, vertical hop, hop for distance and side hop; ACL-RSIā=āThe Anterior Cruciate Ligament Return to Sport after Injury; KOOS QoLā=āThe Knee injury and Osteoarthritis Outcome Score, subscale Quality of Life; MFā=āmuscle function; PROā=āPatient Reported Outcome
There was no significant correlation between passing cut-offs in both PROs and passing 2 MF tests or 5 MF tests, respectively. Passing 2 MF tests and 2 PROs resulted in a very strong correlation with passing 5 MF tests (rĻĀ =ā0.41, pāā¤ā0.001) as well as passing 5 MF tests and 2 PROs (rĻĀ =ā0.79, pāā¤ā0.001) (TableĀ 4).
Discussion
The main finding of this study was that using an RTS test battery comprising 2 MF tests and 2 PROs reduced the passing rate, compared with using a battery of 5 MF tests (19% versus 29%). Interestingly, there was a very strong correlation [35] between the two different test batteries. Therefore, a clinic without advanced testing equipment to measure strength can use 2 hop tests and 2 psychological PROs as criteria for RTS. The passing rates are comparable or even lower than the passing rates of a comprehensive battery of 5 MF tests (strength and hop). There was no significant correlation between passing MF test batteries and reaching cut-offs for either KOOS QoL or ACL-RSI, which indicates that the use of only MF tests or only psychological outcomes is likely insufficient as RTS criteria.
Our results suggest that 1 in every 2 patients passed the RTS criteria and achieved symmetrical knee function, when the decision was based on reaching leg symmetry in 2 unilateral hop tests. With test batteries that comprise more tests, the passing rates decreased, in agreement with the literature [16,17,18]. More tests, thus, increase the demands on the patientās recovery after ACL reconstruction. When 5 MF tests with or without 2 PROs were used, the passing rate, compared with only 2 hop tests, the passing rates decreased from 47% to approximately 13% and 29%, respectively. The use of only 2 hop tests to determine symmetrical muscle function can, therefore, not be recommended, as approximately 30% of patients run the risk of being classified as false positives.
Current recommendations for RTS evaluation are strongly supported by results from the present study, suggesting that batteries of tests should comprise strength and hop tests, as well as PROs [36, 37]. In our cohort, a very small proportion of patients met our recommended RTS criteria at 1āyear after ACL reconstruction. This result indicates that clinical settings, included in Project ACL, and responsible medical professionals for the treatment of the patients in this study, need to better prepare patients in order to make a safe RTS, i.e. increase the use of evidence-based evaluation to guide rehabilitation protocols.
The results of low psychological readiness to RTS and unacceptable low knee-related QoL suggest that some patients have recovered MF without recovering psychological impairments. Psychological factors are important during rehabilitation [38, 39], where for example, high fear of re-injury can prevent patients from returning to their preinjury level of sport [40,41,42]. Furthermore, a lower psychological readiness to RTS 1āyear after ACL reconstruction is associated with a higher risk of a second ACL injury [34], supporting that it is important to include psychological PROs in RTS decision-making, alongside tests of MF.
In this study, a smaller proportion of patients met the criteria for an acceptable ACL-RSI compared with KOOS QoL. The ACL-RSI was developed to assess psychological readiness to RTS [25]. However, the impact returning to sport has on ACL-RSI, i.e. whether RTS leads to high psychological readiness or whether high psychological readiness leads to RTS, is yet to be studied. Patients who do not RTS after ACL reconstruction can report poor knee-related QoL up to 20āyears after surgery, compared with patients who RTS [43]. However, the use of both the KOOS QoL and the ACL-RSI in this study, led to more patients being identified as not ārecoveredā compared with using only MF tests. Future studies are needed to better understand how individual psychological profiles are related to a safe RTS.
Given the high rate of new knee-related injuries in patients after ACL reconstruction [1, 44] and the assumption that patients who RTS might not have been ready for it, more emphasis should be placed on preparing patients for RTS test battery criteria during rehabilitation, especially as passing RTS test batteries can reduce the risk of re-injury [5].
Limitations and strengths
A limitation of this study is that we did not determine the different test batteries effectiveness to reduce the risk of a second ACL injury. Even though there is evidence [5, 45] suggesting that patients who meet certain cut-offs in RTS test batteries have lower risk for a second ACL injury, there is an ongoing debate [46, 47] about the evidence and the validity of RTS testing.
The use of the LSI is a limitation since the patientsā healthy limb can have reduced strength after ACL reconstruction [48], meaning that tests of muscle function may overestimate the function of the operated limb [49]. Results in the present study might therefore be falsely high, which strengthens the recommendation that RTS criteria are important to meet before RTS.
Patients who suffered a second ACL rupture were excluded from the present study in order to create a group of patients that was as homogeneous as possible. Future studies will show how the different batteries of tests assessed in this study affect the risk of a new ACL injury.
In this study, the primary outcomes were results from muscle function tests and PROs. Cases where patients were unable to RTS due to unresolved impairments to the somatosensory system could therefore not be studied.
The primary strength of this study is the relatively large number of patients included. Another strength is the choice of PROs, since the KOOS and the ACL-RSI was used, and these have high methodological quality [29].
Conclusion
The use of hop tests together with psychological PROs provides a clinician-friendly RTS test battery for assessment 1āyear after ACL reconstruction as the passing rate was 19% when using 2 hop-tests combined with 2 PROs, compared with 29% when using 5 tests of MF requiring advanced testing equipment.
Availability of data and materials
The dataset used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- RTS:
-
Return to Sport
- ACL:
-
Anterior Cruciate Ligament
- MF:
-
Muscle Function
- PROs:
-
Patient Reported Outcomes
- KOOS QoL:
-
Knee injury and Osteoarthritis Outcome Score, subscale Quality of Life
- ACL-RSI:
-
ACL Return to Sport after Injury scale
- LSI:
-
Limb Symmetry Index
- SPSS:
-
Statistical Package for Social Sciences
References
Webster KE, Feller JA, Leigh WB, Richmond AK. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(3):641ā7.
Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40(7):1551ā7.
Kievit AJ, Jonkers FJ, Barentsz JH, Blankevoort L. A cross-sectional study comparing the rates of osteoarthritis, laxity, and quality of life in primary and revision anterior cruciate ligament reconstructions. Arthroscopy. 2013;29(5):898ā905.
Svantesson E, Hamrin Senorski E, Baldari A, Ayeni OR, Engebretsen L, Franceschi F, et al. Factors associated with additional anterior cruciate ligament reconstruction and register comparison: a systematic review on the Scandinavian knee ligament registers. Br J Sports Med. 2019;53(7):418ā25.
Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50(13):804ā8.
Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Sports participation 2 years after anterior cruciate ligament reconstruction in athletes who had not returned to sport at 1 year: a prospective follow-up of physical function and psychological factors in 122 athletes. Am J Sports Med. 2015;43(4):848ā56.
Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596ā606.
Lynch AD, Logerstedt DS, Grindem H, Eitzen I, Hicks GE, Axe MJ, et al. Consensus criteria for defining 'successful outcome' after ACL injury and reconstruction: a Delaware-Oslo ACL cohort investigation. Br J Sports Med. 2015;49(5):335ā42..
Weiss MR. Psychological aspects of sport-injury rehabilitation: a developmental perspective. J Athl Train. 2003;38(2):172ā5.
Wiese-Bjornstal DM, Smith AM, Shaffer SM, Morrey MAJJoasp. An integrated model of response to sport injury: Psychological and sociological dynamics 1998;10(1):46ā69.
Truong LK, Mosewich AD, Holt CJ, Le CY, Miciak M, Whittaker JL. Psychological, social and contextual factors across recovery stages following a sport-related knee injury: a scoping review. Br J Sports Med. 2020.
Andrade BF, Courtney D, Duda S, Aitken M, Craig SG, Szatmari P, et al. A systematic review and evaluation of clinical practice guidelines for children and youth with disruptive behavior: rigor of development and recommendations for use. Clin Child Fam Psychol Rev. 2019;22(4):527ā48.
Everhart JS, Best TM, Flanigan DC. Psychological predictors of anterior cruciate ligament reconstruction outcomes: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(3):752ā62.
te Wierike SC, van der Sluis A, van den Akker-Scheek I, Elferink-Gemser MT, Visscher C. Psychosocial factors influencing the recovery of athletes with anterior cruciate ligament injury: a systematic review. Scand J Med Sci Sports. 2013;23(5):527ā40.
Burgi CR, Peters S, Ardern CL, Magill JR, Gomez CD, Sylvain J, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019;53(18):1154ā61.
Herrington L, Ghulam H, Comfort P. Quadriceps strength and functional performance after anterior cruciate ligament reconstruction in professional soccer players at time of return to sport. J Strength Cond Res. 2018.
Thomee R, Neeter C, Gustavsson A, Thomee P, Augustsson J, Eriksson B, et al. Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1143ā51.
Welling W, Benjaminse A, Seil R, Lemmink K, Zaffagnini S, Gokeler A. Low rates of patients meeting return to sport criteria 9 months after anterior cruciate ligament reconstruction: a prospective longitudinal study. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3636ā44.
Beischer S, Hamrin Senorski E, Thomee C, Samuelsson K, Thomee R. How is psychological outcome related to knee function and return to sport among adolescent athletes after anterior cruciate ligament reconstruction? Am J Sports Med. 2019;47(7):1567ā75.
Hamrin Senorski E, Samuelsson K, Thomee C, Beischer S, Karlsson J, Thomee R. Return to knee-strenuous sport after anterior cruciate ligament reconstruction: a report from a rehabilitation outcome registry of patient characteristics. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1364ā74.
Beischer S, Hamrin Senorski E, Thomee C, Samuelsson K, Thomee R. Knee strength, hop performance and self-efficacy at 4 months are associated with symmetrical knee muscle function in young athletes 1 year after an anterior cruciate ligament reconstruction. BMJ Open Sport Exerc Med. 2019;5(1):e000504.
Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):778ā88.
Feiring DC, Ellenbecker TS, Derscheid GL. Test-retest reliability of the Biodex isokinetic dynamometer. J Orthop Sports Phys Ther. 1990;11(7):298ā300.
Roos EM, Lohmander LS. The knee injury and osteoarthritis outcome score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64.
Webster KE, Feller JA, Lambros C. Development and preliminary validation of a scale to measure the psychological impact of returning to sport following anterior cruciate ligament reconstruction surgery. Phys Ther Sport. 2008;9(1):9ā15.
Webster KE, Feller JA. Development and validation of a short version of the anterior cruciate ligament return to sport after injury (ACL-RSI) scale. Orthop J Sports Med. 2018;6(4):2325967118763763.
Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;198:43ā9.
Kong DH, Yang SJ, Ha JK, Jang SH, Seo JG, Kim JG. Validation of functional performance tests after anterior cruciate ligament reconstruction. Knee Surg Relat Res. 2012;24(1):40ā5.
Gagnier JJ, Shen Y, Huang H. Psychometric properties of patient-reported outcome measures for use in patients with anterior cruciate ligament injuries: a systematic review. JBJS Rev. 2018;6(4):e5.
Ingelsrud LH, Terwee CB, Terluin B, Granan LP, Engebretsen L, Mills KAG, et al. Meaningful change scores in the knee injury and osteoarthritis outcome score in patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2018;46(5):1120ā8.
Abrams GD, Harris JD, Gupta AK, McCormick FM, Bush-Joseph CA, Verma NN, et al. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):2325967113518305.
Muller B, Yabroudi MA, Lynch A, Lai CL, van Dijk CN, Fu FH, et al. Defining thresholds for the patient acceptable symptom state for the IKDC subjective knee form and KOOS for patients who underwent ACL reconstruction. Am J Sports Med. 2016;44(11):2820ā6.
Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549ā58.
McPherson AL, Feller JA, Hewett TE, Webster KE. Psychological readiness to return to sport is associated with second anterior cruciate ligament injuries. Am J Sports Med. 2019;47(4):857ā62.
Akoglu H. User's guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91ā3.
Meredith SJ, Rauer T, Chmielewski TL, Fink C, Diermeier T, Rothrauff BB, et al. Return to sport after anterior cruciate ligament injury: Panther Symposium ACL Injury Return to Sport Consensus Group. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2020.
Thomee R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, et al. Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1798ā805.
Sonesson S, Kvist J, Ardern C, Osterberg A, Silbernagel KG. Psychological factors are important to return to pre-injury sport activity after anterior cruciate ligament reconstruction: expect and motivate to satisfy. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1375ā84.
Webster KE, Feller JA. A research update on the state of play for return to sport after anterior cruciate ligament reconstruction. J Orthop Traumatol. 2019;20(1):10.
Kvist J, Ek A, Sporrstedt K, Good L. Fear of re-injury: a hindrance for returning to sports after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2005;13(5):393ā7.
McVeigh F, Pack SM. An exploration of sports rehabilitators' and athletic rehabilitation therapists' views on fear of reinjury after anterior cruciate ligament reconstruction. J Sport Rehabil. 2015;24(2):140ā50.
DiSanti J, Lisee C, Erickson K, Bell D, Shingles M, Kuenze C. Perceptions of rehabilitation and return to sport among high school athletes with anterior cruciate ligament reconstruction: a qualitative research study. J Orthop Sports Phys Ther. 2018;48(12):951ā9.
Filbay SR. Longer-term quality of life following ACL injury and reconstruction. Br J Sports Med. 2018;52(3):208ā9.
Snaebjƶrnsson T, Hamrin Senorski E, Sundemo D, Svantesson E, Westin O, Musahl V, et al. Adolescents and female patients are at increased risk for contralateral anterior cruciate ligament reconstruction: a cohort study from the Swedish National Knee Ligament Register based on 17,682 patients. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3938ā44.
Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946ā51.
Capin JJ, Snyder-Mackler L, Risberg MA, Grindem H. Keep calm and carry on testing: a substantive reanalysis and critique of 'what is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis'. Br J Sports Med. 2019;53(23):1444ā6.
Webster KE, Hewett TE. What is the evidence for and validity of return-to-sport testing after anterior cruciate ligament reconstruction surgery? A systematic review and meta-analysis. Sports Med. 2019;49(6):917ā29.
Hiemstra L, Webber S, Macdonald P, Kriellaars D. Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clinical biomechanics (Bristol, Avon). 2007;22:543ā50.
Wellsandt E, Failla MJ, Snyder-Mackler L. Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2017;47(5):334ā8.
Acknowledgments
The authors acknowledge Christoffer ThomeƩ for technical support of the Project ACL database.
Authors ācontributions
Authors RT, EHS and SB have contributed to the design of Project ACL and all the included methods and follow-ups that have made this specific study possible. Authors RP and EHS are responsible for drafting the manuscript and have contributed substantially to the research question and the analysis of data. Authors RP, EHS, SB and RT have made major contributions by critically revising the manuscript for important intellectual content. All authors have read and approved the final version of the manuscript.
Funding
Grants for publication of the manuscript have been received from Gothenburg and southern Bohuslän“s council for research and development.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Ethical approval was obtained from the Regional Ethical Review Board in Gothenburg, Sweden (registration numbers: 265ā13, T023ā17). Upon registration in Project ACL patients sign a written consent for their data to be used for further analysis.
Consent for publication
Not applicable.
Competing interests
The authors declare have no competing interests to declare.
Additional information
Publisherās Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Piussi, R., Beischer, S., ThomeƩ, R. et al. Hop tests and psychological PROs provide a demanding and clinician-friendly RTS assessment of patients after ACL reconstruction, a registry study. BMC Sports Sci Med Rehabil 12, 32 (2020). https://doi.org/10.1186/s13102-020-00182-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13102-020-00182-z