Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77.
Article
Google Scholar
Siegl A, Kösel EM, Tam N, Koschnick S, Langerak N, Skorski S, et al. Submaximal markers of fatigue and overreaching; implications for monitoring athletes. Int J Sports Med. 2017;38(09):675–82.
Article
Google Scholar
Roete AJ, Elferink-Gemser MT, Otter RTA, Stoter IK, Lamberts RP. A systematic review on markers of functional overreaching in endurance athletes. Int J Sports Physiol Perform. 2021;16(8):1065–73.
Article
Google Scholar
García-Pinillos F, Ramírez-Campillo R, Boullosa D, Jiménez-Reyes P, Latorre-Román PÁ. Vertical jumping as a monitoring tool in endurance runners: a brief review. J Hum Kinet. 2021;80(1):297–308.
Article
Google Scholar
Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743–51.
Article
Google Scholar
Vesterinen V, Nummela A, Heikura I, Laine T, Hynynen E, Botella J, et al. Individual endurance training prescription with heart rate variability. Med Sci Sports Exerc. 2016;48(7):1347–54.
Article
Google Scholar
Düking P, Zinner C, Trabelsi K, Reed JL, Holmberg HC, Kunz P, et al. Monitoring and adapting endurance training on the basis of heart rate variability monitored by wearable technologies: a systematic review with meta-analysis. J Sci Med Sport. 2021;24:1180–92.
Article
Google Scholar
Ryan S, Kempton T, Impellizzeri FM, Coutts AJ. Training monitoring in professional Australian football: theoretical basis and recommendations for coaches and scientists. Science and Medicine in Football. 2020;4(1):52–8.
Article
Google Scholar
Jeffries AC, Marcora SM, Coutts AJ, Wallace L, McCall A, Impellizzeri FM. Development of a revised conceptual framework of physical training for use in research and practice. Sports Med. 2021. https://doi.org/10.1007/s40279-021-01551-5.
Article
Google Scholar
Guthrie B, Jagim AR, Jones MT. Ready or not, here I come: a scoping review of methods used to assess player readiness via indicators of neuromuscular function in football code athletes. Strength Cond J. 2022. https://doi.org/10.1519/SSC.0000000000000735.
Article
Google Scholar
Manresa-Rocamora A, Flatt AA, Casanova-Lizón A, Ballester-Ferrer JA, Sarabia JM, Vera-Garcia FJ, et al. Heart rate-based indices to detect parasympathetic hyperactivity in functionally overreached athletes. A meta-analysis. Scand J Med Sci Sports. 2021;31(6):1164–82.
Article
Google Scholar
Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–73.
Article
Google Scholar
Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81.
Article
Google Scholar
Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014. https://doi.org/10.3389/fphys.2014.00073/abstract.
Article
Google Scholar
Flatt AA, Hornikel B, Esco MR. Heart rate variability and psychometric responses to overload and tapering in collegiate sprint-swimmers. J Sci Med Sport. 2017;20(6):606–10.
Article
Google Scholar
Kristal-Boneh E, Froom P, Harari G, Malik M, Ribak J. Summer-winter differences in 24 h variability of heart rate. Eur J Cardiovasc Risk. 2000;7(2):141–6.
Article
CAS
Google Scholar
Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9(6):1026–32.
Article
Google Scholar
Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol. 2004. https://doi.org/10.1007/s00421-004-1119-0.
Article
Google Scholar
Bellenger CR, Fuller JT, Thomson RL, Davison K, Robertson EY, Buckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med. 2016;46(10):1461–86.
Article
Google Scholar
Rogers B, Gronwald T. Fractal correlation properties of heart rate variability as a biomarker for intensity distribution and training prescription in endurance exercise: an update. Front Physiol. 2022;13: 879071.
Article
Google Scholar
Rogers B, Mourot L, Doucende G, Gronwald T. Fractal correlation properties of heart rate variability as a biomarker of endurance exercise fatigue in ultramarathon runners. Physiol Rep. 2021. https://doi.org/10.14814/phy2.14956.
Article
Google Scholar
Gronwald T, Rogers B, Hoos O. Fractal correlation properties of heart rate variability: a new biomarker for intensity distribution in endurance exercise and training prescription? Front Physiol. 2020;11: 550572.
Article
Google Scholar
Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82–7.
Article
CAS
Google Scholar
Sandercock GRH, Brodie DA. The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports. 2006;16(5):302–13.
Article
CAS
Google Scholar
Gronwald T, Hoos O. Correlation properties of heart rate variability during endurance exercise: a systematic review. Ann Noninvasive Electrocardiol. 2020. https://doi.org/10.1111/anec.12697.
Article
Google Scholar
Rogers B, Giles D, Draper N, Hoos O, Gronwald T. A new detection method defining the aerobic threshold for endurance exercise and training prescription based on fractal correlation properties of heart rate variability. Front Physiol. 2021;11: 596567.
Article
Google Scholar
Rogers B, Giles D, Draper N, Mourot L, Gronwald T. Detection of the anaerobic threshold in endurance sports: validation of a new method using correlation properties of heart rate variability. JFMK. 2021;6(2):38.
Article
Google Scholar
Rogers B, Berk S, Gronwald T. An index of non-linear HRV as a proxy of the aerobic threshold based on blood lactate concentration in elite triathletes. Sports (Basel). 2022;18:25.
Article
Google Scholar
Mateo-March M, Moya-Ramón M, Javaloyes A, Sánchez-Muñoz C, Clemente-Suárez VJ. Validity of detrended fluctuation analysis of heart rate variability to determine intensity thresholds in professional cyclists. Eur J Sport Sci 2022; 1–20.
Balagué N, Hristovski R, Almarcha M, Garcia-Retortillo S, Ivanov PCh. Network physiology of exercise: vision and perspectives. Front Physiol. 2020;11: 611550.
Article
Google Scholar
Shushan T, McLaren SJ, Buchheit M, Scott TJ, Barrett S, Lovell R. Submaximal fitness tests in team sports: a theoretical framework for evaluating physiological state. Sports Med. 2022. https://doi.org/10.1007/s40279-022-01712-0.
Article
Google Scholar
Rogers B, Schaffarczyk M, Clauß M, Mourot L, Gronwald T. The movesense medical sensor chest belt device as single channel ECG for RR interval detection and HRV analysis during resting state and incremental exercise: a cross-sectional validation study. Sensors (Basel). 2022;22:2032.
Article
Google Scholar
Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6.
Article
CAS
Google Scholar
Löllgen H, Leyk D. Exercise testing in sports medicine. Dtsch Arztebl Int. 2018. https://doi.org/10.3238/arztebl.2018.0409.
Article
Google Scholar
Gaskill SE, Ruby BC, Walker AJ, Sanchez OA, Serfass RC, Leon AS. Validity and reliability of combining three methods to determine ventilatory threshold. Med Sci Sports Exerc. 2001;33(11):1841–8.
Article
CAS
Google Scholar
Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil. 2008;15(6):726–34.
Article
Google Scholar
Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):7.
Google Scholar
Kölling S, Hitzschke B, Holst T, Ferrauti A, Meyer T, Pfeiffer M, et al. Validity of the acute recovery and stress scale: training monitoring of the German Junior National Field Hockey Team. Int J Sports Sci Coach. 2015;10(2–3):529–42.
Article
Google Scholar
Nässi A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Development of two short measures for recovery and stress in sport. Eur J Sport Sci. 2017;17(7):894–903.
Article
Google Scholar
Puta C, Steidten T, Baumbach P, Wöhrl T, May R, Kellmann M, et al. Standardized assessment of resistance training-induced subjective symptoms and objective signs of immunological stress responses in young athletes. Front Physiol. 2018;9:698.
Article
Google Scholar
Claudino JG, Cronin J, Mezêncio B, McMaster DT, McGuigan M, Tricoli V, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20(4):397–402.
Article
Google Scholar
Krauss TT. Der 15 Sekunden Foot-Tapping Test (FTT15): Evaluation als sportmotorisches Testverfahren sowie Analyse der Beeinfussbarkeit leistungsphysiologischer Parameter durch eine spezifsche Vorbelastung [Dissertation]. [Hamburg]: Medizinische Fakultät der Universität Hamburg; 2011.
Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-aho PO, Karjalainen PA. Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210–20.
Article
Google Scholar
Mendonca GV, Heffernan KS, Rossow L, Guerra M, Pereira FD, Fernhall B. Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Appl Physiol Nutr Metab. 2010;35(S1):439–46.
Article
Google Scholar
Lipponen JA, Tarvainen MP. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J Med Eng Technol. 2019;43(3):173–81.
Article
Google Scholar
Rogers B, Giles D, Draper N, Mourot L, Gronwald T. Influence of artefact correction and recording device type on the practical application of a non-linear heart rate variability biomarker for aerobic threshold determination. Sensors. 2021;21(3):821.
Article
Google Scholar
Chen Z, Ivanov PCh, Hu K, Stanley HE. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E. 2002;65(4): 041107.
Article
Google Scholar
Shaffer F, Shearman S, Meehan ZM. The promise of ultra-short-term (UST) heart rate variability measurements. Biofeedback. 2016;44(4):229–33.
Article
Google Scholar
Shaffer F, Meehan ZM, Zerr CL. A critical review of ultra-short-term heart rate variability norms research. Front Neurosci. 2020;14: 594880.
Article
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.
Google Scholar
Buchheit M. Want to see my report, coach? Aspetar Sports Med J. 2017;6:36–43.
Google Scholar
Hopkins W. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:16–20.
Google Scholar
Hopkins W. A spreadsheet for monitoring an individual’s changes and trend. Sportscience. 2017;21:5–9.
Google Scholar
Swinton PA, Hemingway BS, Saunders B, Gualano B, Dolan E. A Statistical framework to interpret individual response to intervention: paving the way for personalized nutrition and exercise prescription. Front Nutr. 2018;5:41.
Article
Google Scholar
Gronwald T, Ludyga S, Hoos O, Hottenrott K. Non-linear dynamics of cardiac autonomic activity during cycling exercise with varied cadence. Hum Mov Sci. 2018;60:225–33.
Article
Google Scholar
Gronwald T, Berk S, Altini M, Mourot L, Hoos O, Rogers B. Real-time estimation of aerobic threshold and exercise intensity distribution using fractal correlation properties of heart rate variability: a single-case field application in a former olympic triathlete. Front Sports Act Living. 2021;3: 668812.
Article
Google Scholar