Tortora GJ, Derrickson B. Principles of anatomy and physiology. 14th ed. United States of America: John Wiley & Sons, Inc.; 2014.
Weeks KL, McMullen JR. The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda). 2011;26:97–105.
CAS
Google Scholar
Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac Remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98:5–10.
Article
CAS
Google Scholar
Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227.
Article
CAS
Google Scholar
Maron BJ, Pelliccia A. The heart of trained athletes : cardiac remodeling and the risks of sports, including Suddent death. Circulation. 2006;114:1633–44.
Article
Google Scholar
Maron BJ, Pelliccia A, Spataro A, Granata M. Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. Br Heart J. 1993;69:125–8.
Article
CAS
Google Scholar
Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105:944–9.
Article
Google Scholar
Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Frontiers in Cardiovascular Medicine. 2018;5:135.
Article
Google Scholar
Bernardo BC, ], Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev 2018;98:419–475.
Article
CAS
Google Scholar
Lee CH, Inoki K, Guan KL. mTOR pathway as a target in tissue hypertrophy. Annu Rev Pharmacol Toxicol. 2007;47:443–67.
Article
CAS
Google Scholar
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.
Article
CAS
Google Scholar
Sciarretta S, Forte M, Frati G, Sadoshima J. New insights into the role of mTOR signaling in the cardiovascular system. Circ Res. 2018;122:489–505.
Article
CAS
Google Scholar
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.
Article
CAS
Google Scholar
Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 2006;281:29776–87.
Article
CAS
Google Scholar
Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 2014;129:1139–51.
Article
CAS
Google Scholar
He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481:511–5.
Article
CAS
Google Scholar
Lee Y, Kang EB, Kwon I, Cosio-Lima L, Cavnar P, Javan GT. Cardiac Kinetophagy coincides with activation of anabolic signaling. Med Sci Sports Exerc. 2016;48:219–26.
Article
Google Scholar
Ogura Y, Iemitsu M, Naito H, Kakigi R, Kakehashi C, Maeda S, et al. Single bout of running exercise changes LC3-II expression in rat cardiac muscle. Biochem Biophys Res Commun. 2011;414:756–60.
Article
CAS
Google Scholar
Fiuza-Luces C, Delmiro A, Soares-Miranda L, González-Murillo Á, Martínez-Palacios J, Ramírez M, et al. Exercise training can induce cardiac autophagy at end-stage chronic conditions: insights from a graft-versus-host-disease mouse model. Brain Behav Immun. 2014;39:56–60.
Article
Google Scholar
Council NR. Guide for the Care and Use of Laboratory Animals. 8th edition ed. Washington (DC): National Academies Press (US); 2011. p. 246.
Lesmana R, Iwasaki T, Iizuka Y, Amano I, Shimokawa N, Koibuchi N. The change in thyroid hormone signaling by altered training intensity in male rat skeletal muscle. Endocr J. 2016;63:727–38.
Article
CAS
Google Scholar
Tarawan VM, Gunadi JW, Setiawan LR, Goenawan H, Meilina DE, et al. Alteration of autophagy gene expression by different intensity of exercise in gastrocnemius and soleus muscles of Wistar rats. J Sports Sci Med. 2019;18:146–54.
PubMed
PubMed Central
Google Scholar
Association AVM. AVMA guidelines for the euthanasia of animals: 2013 Edition; 2013. p. 1–102.
Google Scholar
McLeod CJ, Bos JM, Theis JL, Edwards WD, Gersh BJ, Ommen SR, et al. Histologic characterization of hypertrophic cardiomyopathy with and without myofilament mutations. Am Heart J. 2009;158:799–805.
Article
CAS
Google Scholar
Maron BJ, Wolfson JK, Roberts WC. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol. 1992;70:785–90.
Article
CAS
Google Scholar
Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32.
Article
CAS
Google Scholar
Krusen M, Keyhani-Nejad F, Isken F, Nitz B, Kretschmer A, Reischl E, et al. High-fat diet during mouse pregnancy and lactation targets GIP-regulated metabolic pathways in adult male offspring. Diabetes. 2016;65:574–84.
Article
Google Scholar
Yin P, Wan C, He S, Xu X, Liu M, Song S, et al. Transport stress causes damage in rats' liver and triggers liver autophagy. Bio Technology : An Indian Journal. 2013;8:1561–6.
CAS
Google Scholar
Kowalik MA, Perra A, Ledda-Columbano GM, Ippolito G, Piacentini M, Columbano A, et al. Induction of autophagy promotes the growth of early preneoplastic rat liver nodules. Oncotarget. 2016;7:5788–99.
PubMed
Google Scholar
Wang K, Wang F, Bao JP, Xie ZY, Chen L, Zhou BY, et al. Tumor necrosis factor α modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway. J Pain Res. 2017;10:1265–71.
Article
CAS
Google Scholar
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118:400–9.
Article
CAS
Google Scholar
Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143:1072–83.
Article
Google Scholar
Bernardo BC, McMullen JR. Molecular aspects of exercise-induced cardiac remodeling. Cardiol Clin. 2016;34:515–30.
Article
Google Scholar
Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation. 2011;123:13–22.
Article
Google Scholar
Wang Y, Wisloff U, Kemi OJ. Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res. 2010;59:633–44.
CAS
PubMed
Google Scholar
Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. The Journal of Physiological Science: JPS. 2017;67:639–54.
Article
Google Scholar
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.
Article
CAS
Google Scholar
Vasan RS, Larson MG, Levy D, Evans JC, Benjamin EJ. Distribution and categorization of echocardiographic measurements in relation to reference limits: the Framingham heart study: formulation of a height- and sex-specific classification and its prospective validation. Circulation. 1997;96:1863–73.
Article
CAS
Google Scholar
An P, Borecki IB, Rankinen T, Després JP, Leon AS, Skinner JS, et al. Evidence of major genes for plasma HDL, LDL cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance training: the HERITAGE family study. International Journals of Sport Medicine. 2005;26:414–9.
Article
CAS
Google Scholar
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab. 2017;25:1012–26.
Article
CAS
Google Scholar